The influence of particle size on the ionic conductivity of ceramic materials is an active area of research, and novel effects are observed as particles approach the nanoscale in size. Zeolites are crystalline aluminosilicates with ion-exchangeable cations that are responsible for ionic conductivity at high temperatures. In this paper, we present systematic results for the first time of ionic conductivity in alkali metal ion-exchanged faujasitic zeolites with morphologies ranging from a zeolite membrane, micrometer-sized, submicrometer, and nanoparticles of zeolite. Using impedance spectroscopy in the range of 10 MHz to 0.1 Hz, we have obtained the activation energy (E(act)) of cation motion with these various morphologies in the temperature range of 525-625 °C. Overall, the E(act) decreases with Si/Al ratio. Surface modification of the zeolite particles was carried out with a silylating agent, which upon high temperature calcination should lead to the formation of a monolayer Si-O-Si film on the particle surface. This surface modification had minimal influence on the E(act) of micrometer-sized zeolites. However, E(act) increased rapidly as the zeolite particle approached the nanoscale. These observations led us to propose that, for the high-temperature, low-frequency (10(4)-10(5) Hz), long-range ionic conduction in zeolites, cation hopping across grain boundaries is relevant to ion transport, especially as the size of the crystallite approaches the nanoscale. Intergrain boundaries are more defective in the nanosized zeolite and contribute to the higher E(act).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp407751d | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:
The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:
Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!