Background: Rhodamine B (RhB) is widely used as a colorant in textiles and food stuffs, and is also a well-known water tracer fluorescent. It is harmful to human beings and animals, and causes irritation of the skin, eyes and respiratory tract. The carcinogenicity, reproductive and developmental toxicity, neurotoxicity and chronic toxicity toward humans and animals have been experimentally proven. RhB cannot be effectively removed by biological treatment due to the slow kinetics. Therefore, RhB is chosen as a model pollutant for liquid phase plasma (LPP) treatment in the present investigation.

Results: This paper presents experimental results for the bleaching of RhB from aqueous solutions in the presence of TiO2 photocatalyst with LPP system. Properties of generated plasma were investigated by optical emission spectroscopy methods. The results of electrical-discharge degradation of RhB showed that the decomposition rate increased with the applied voltage, pulse width, and frequency. The oxygen gas addition to reactant solution increases the degradation rate by active oxygen species. The RhB decomposition rate was shown to increase with the TiO2 particle dosage.

Conclusion: This work presents the conclusions on the photocatalytic oxidation of RhB, as a function of plasma conditions, oxygen gas bubbling as well as TiO2 particle dosage. We knew that using the liquid phase plasma system with TiO2 photocatalyst at high speed we could remove the organic matter in the water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847586PMC
http://dx.doi.org/10.1186/1752-153X-7-156DOI Listing

Publication Analysis

Top Keywords

tio2 photocatalyst
12
liquid phase
12
phase plasma
12
rhb decomposition
8
decomposition rate
8
oxygen gas
8
tio2 particle
8
rhb
7
tio2
5
plasma
5

Similar Publications

Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction.

J Am Chem Soc

January 2025

Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.

View Article and Find Full Text PDF

The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.

View Article and Find Full Text PDF

Ultrahigh-Selectivity Photocatalytic Upgrading of Bio-Aldehydes/Diols to Monoalcohols Via In Situ Circumventing Coupling Co-Products Over Janus Single-Atom Pd/TiO.

Small Methods

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.

Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

Insight into photocatalytic CO reduction on TiO-supported Cu nanorods: a DFT study on the reaction mechanism and selectivity.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!