It is well known that genes and environment interact to produce behavioral phenotypes. One environmental factor with long-term effects on gene transcription and behavior is maternal care. A classic paradigm for examining maternal care and genetic interactions is to foster pups of one genetic strain to dams of a different strain ("between-strain fostering"). In addition, fostering to a dam of the same strain ("within-strain fostering") is used to reduce indirect effects, via behavioral changes in the dams, of gestation treatments on offspring. Using within-and between-strain fostering we examined the contributions of genetics/prenatal environment, maternal care, and the effects of fostering per se, on adult aggressive behavior in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (DBA). We hypothesized that males reared by dams of the more aggressive DBA strain would attack intruders faster than those reared by B6 dams. Surprisingly, we found that both methods of fostering enhanced aggressive behavior, but only in B6 mice. Since all the B6 offspring are genetically identical, we asked if maternal behavior of B6 dams was affected by the relatedness of their pups. In fact, B6 dams caring for foster B6 pups displayed significantly reduced maternal behaviors. Finally, we measured vasopressin and corticotrophin releasing hormone mRNA in the amygdalae of adult B6 males reared by foster or biological dams. Both genes correlated with aggressive behavior in within-strain fostered B6 mice, but not in mice reared by their biological dams. In sum, we have demonstrated in inbred laboratory mice, that dams behave differently when rearing their own newborn pups versus pups from another dam of the same strain. These differences in maternal care affect aggression in the male offspring and transcription of Avp and Crh in the brain. It is likely that rearing by foster dams has additional effects and implications for other species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769275 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075037 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!