Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells.

PLoS One

Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan.

Published: June 2014

The endoplasmic reticulum (ER) plays essential roles in protein folding and assembly of secretory proteins. ER-resident molecular chaperones and related enzymes assist in protein maturation by co-operated interactions and modifications. However, the folding/assembly of multimeric proteins is not well understood. Here, we show that the maturation of fibrinogen, a hexameric secretory protein (two trimers from α, β and γ subunits), occurs in a stepwise manner. The αγ complex, a precursor for the trimer, is retained in the ER by lectin-like chaperones, and the β subunit is incorporated into the αγ complex immediately after translation. ERp57, a protein disulfide isomerase homologue, is involved in the hexamer formation from two trimers. Our results indicate that the fibrinogen hexamer is formed sequentially, rather than simultaneously, using kinetic pause by lectin chaperones. This study provides a novel insight into the assembly of most abundant multi-subunit secretory proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769264PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074580PLOS

Publication Analysis

Top Keywords

endoplasmic reticulum
8
secretory proteins
8
αγ complex
8
stepwise assembly
4
assembly fibrinogen
4
fibrinogen assisted
4
assisted endoplasmic
4
reticulum lectin-chaperone
4
lectin-chaperone system
4
system hepg2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!