A test for pre-adapted phenotypic plasticity in the invasive tree Acer negundo L.

PLoS One

Department of Biology, York University, Toronto, Ontario, Canada ; University of Bordeaux, UMR 1202 BIOGECO, Talence, France ; INRA, UMR 1202 BIOGECO, Cestas, France.

Published: June 2014

Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767822PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074239PLOS

Publication Analysis

Top Keywords

phenotypic plasticity
12
invasive populations
12
increased plasticity
12
plasticity
9
acer negundo
8
invasive
7
native
5
test pre-adapted
4
pre-adapted phenotypic
4
plasticity invasive
4

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Pollination ecotypes and the origin of plant species.

Proc Biol Sci

January 2025

Centre for Functional Biodiversity, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa.

Ecological niche shifts are a key driver of phenotypic divergence and contribute to isolating barriers among lineages. For many groups of organisms, the history of these shifts and associated trait-environment correlations are well-documented at the macroevolutionary level. However, the processes that generate these patterns are initiated below the species level, often by the formation of ecotypes in contrasting environments.

View Article and Find Full Text PDF

Feature-selective adaptation of numerosity perception.

Proc Biol Sci

January 2025

Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.

Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity.

View Article and Find Full Text PDF

To forecast how fast populations can adapt to climate change, it is essential to determine the evolutionary potential of different life-cycle stages under selection. In birds, timing of gonadal development and moult are primarily regulated by photoperiod, while laying date is highly phenotypically plastic to temperature. We tested whether geographic variation in phenology of these life-cycle events between populations of great tits () has a genetic basis, indicating that contemporary genetic adaptation is possible.

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!