AI Article Synopsis

Article Abstract

Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767779PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073787PLOS

Publication Analysis

Top Keywords

kinases phosphatases
20
receptor potential
12
ion channel
12
phosphorylation drosophila
8
drosophila transient
8
transient receptor
8
phototransduction cascade
8
protein kinases
8
trp ion
8
phosphorylation trp
8

Similar Publications

The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis.

Acta Parasitol

January 2025

División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.

Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite.

View Article and Find Full Text PDF

Hibernating mammals such as the thirteen-lined ground squirrel () experience significant reductions in oxidative metabolism and body temperature when entering a state known as torpor. Animals entering or exiting torpor do not experience permanent loss of brain function or other injuries, and the processes that enable such neuroprotection are not well understood. To gain insight into changes in protein function that occur in the dramatically different physiological states of hibernation, we performed quantitative phosphoproteomics experiments on thirteen-lined ground squirrels that are summer-active, winter-torpid, and spring-active.

View Article and Find Full Text PDF

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

The cell cycle oscillator and spindle length set the speed of chromosome separation in Drosophila embryos.

Curr Biol

January 2025

Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA. Electronic address:

Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.

View Article and Find Full Text PDF

Phase boundaries promote chemical reactions through localized fluxes.

J Chem Phys

January 2025

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!