Sub-surface irrigation (SUI) is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI) and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1) The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01). The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01), 8.7% (P<0.01) and 43.8% (P<0.01) higher than for soils using FLI. 2) The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3) Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m(-3) ha(-1). 4) The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01). 5) The average yields of cherries under SUI with irrigation quotas of 80-320 m(3) ha(-1) were 8.7%-34.9% higher than those in soil with no irrigation (CK2). The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m(3) ha(-1) per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767816 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073570 | PLOS |
Environ Monit Assess
December 2024
Satyawati College (Evening), University of Delhi, Delhi, 110052, India.
Boron toxicity is an increasingly serious problem leading to soil degradation and vegetation loss in arid and semi-arid environments worldwide. The soils of solonetzic complexes often display this characteristic. This study aimed to investigate the vertical distribution of hot water soluble-boron (hws-B) in the sodic and agricultural soils of Israna block in Haryana, India.
View Article and Find Full Text PDFSci Total Environ
October 2024
Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus, C, Denmark. Electronic address:
Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs.
View Article and Find Full Text PDFSci Total Environ
October 2024
Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Italy.
The two contrasting extremes of the hydrological spectrum have substantial and far-reaching impacts on a wide range of sectors including water resources, agriculture and food security, energy, infrastructure, and ecosystem. The compounding factors of climate change, burgeoning population, and rapid economic development create unprecedented challenges in devising effective and sustainable strategies to cope with these natural disasters and minimize their devastating impacts. This study identifies the geographical areas that are prone to meteorological wet-dry extreme events, as drivers of hydrologic floods and droughts, and their temporal compounding in the transboundary Upper Jhelum Basin-South Asia.
View Article and Find Full Text PDFJ Environ Manage
April 2024
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:
Biogas slurry, a by-product of the anaerobic digestion of biomass waste, predominantly consisting of livestock and poultry manure, is widely acclaimed as a sustainable organic fertilizer owing to its abundant reserves of essential nutrients. Its distinctive liquid composition, when tactfully integrated with a drip irrigation system, unveils immense potential, offering unparalleled convenience in application. In this study, we investigated the impact of biogas slurry topdressing as a replacement for chemical fertilizer (BSTR) on soil total organic carbon (TOC) fractions and carbon (C)-degrading enzyme activities across different soil depths (surface, sub-surface, and deep) during the tasseling (VT) and full maturity stage (R6) of maize.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
March 2024
Samaritan Health Services, Corvallis, OR, USA.
Background: The DiamondTemp ablation (DTA) system is a novel temperature-controlled irrigated radiofrequency (RF) ablation system that accurately measures tip-tissue temperatures for real-time power modulation. Lesion morphologies from longer RF durations with the DTA system have not been previously described. We sought to evaluate lesion characteristics of the DTA system when varying the application durations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!