The retina is prone to oxidative stress from many factors which are also involved in the pathogenesis of degenerative diseases. In this study, we used the application of blue light as a physiological stress factor. The aim of this study was to identify the major source of intracellular ROS that mediates blue light-induced detrimental effects on cells which may lead to cytotoxicity. We hypothesized that outer segments are the major source of blue light induced ROS generation. In photoreceptors, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes and the recently found respiratory chain complexes may represent a major source for reactive oxygen species (ROS), beside mitochondria and chromophores. Therefore, we investigated this hypothesis and analysed the exact localization of the ROS source in photoreceptors in an organotypic culture system for mouse retinas. Whole eyeball cultures were irradiated with visible blue light (405 nm) with an output power of 1 mW/cm². Blue light impingement lead to an increase of ROS production (detected by H2DCFDA in live retinal explants), which was particularly strong in the photoreceptor outer segments. Nox-2 and Nox-4 proteins are sources of ROS in blue light irradiated photoreceptors; the Nox inhibitor apocynin decreased ROS stimulated by blue light. Concomitantly, enzyme SOD-1, a member of the antioxidant defense system, indicator molecules of protein oxidation (CML) and lipid oxidation (MDA and 4-HNE) were also increased in the outer segments. Interestingly, outer segments showed a mitochondrial-like membrane potential which was demonstrated using two dyes (JC-1 and TMRE) normally exclusively associated with mitochondria. As in mitochondria, these dyes indicated a decrease of the membrane potential in hypoxic states or cell stress situations. The present study demonstrates that ROS generation and oxidative stress occurs directly in the outer segments of photoreceptors after blue light irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770596 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071570 | PLOS |
Sci Rep
December 2024
Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 3, 1348, Louvain-La-Neuve, Belgium.
The bioluminescent European brittle star Amphiura filiformis produces blue light at the arm-spine level thanks to a biochemical reaction involving coelenterazine as substrate and a Renilla-like luciferase as an enzyme. This echinoderm light production depends on a trophic acquisition of the coelenterazine substrate. Without an exogenous supply of coelenterazine, this species loses its luminous capabilities.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
The ocean wave energy is considered one of the most promising forms of marine blue energy due to its vast reserves and high energy density. However, traditional electromagnetic power generation technology suffers from drawbacks such as high maintenance costs, heavy structures, and low conversion efficiency, which restricts its application range. The triboelectric nanogenerator (TENG) uses Maxwell displacement current as its internal driving force, which can efficiently convert irregular, low-frequency, and dispersed mechanical energy into electrical energy.
View Article and Find Full Text PDFFront Plant Sci
December 2024
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.
Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).
Int J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!