Background: Previous studies have investigated the association between single nucleotide polymorphisms (SNPs) located in microRNAs (miRNAs) and breast cancer susceptibility; however, because of their limited statistical power, many discrepancies are revealed in these studies. The meta-analysis presented here aimed to identify and characterize the roles of miRNA SNPs in breast cancer risk, and evaluate the associations of polymorphisms in miR-146a rs2910164, miR-196a rs11614913 and miR-499 rs3746444 with breast cancer susceptibility, respectively.
Methodology/principal Findings: The PubMed and Embases databases were searched updated to 31(st) December, 2012. The complete data of polymorphisms in miR-146a rs2910164, miR-196a rs11614913 and miR-499 rs3746444 from case-control studies for breast cancer were analyzed by odds ratios (ORs) with 95% confidence intervals (CIs) to reveal the associations of SNPs in miRNAs with breast cancer susceptibility. Totally, six studies for rs2910164 in miR-146a, involving 4225 cases and 4469 controls; eight studies for rs11614913 in miR-196a, involving 4110 cases and 5100 controls; and three studies of rs3746444 in miR-499, involving 2588 cases and 3260 controls, were investigated in the meta-analysis. The rs11614913 (TT+CT) genotype of miR-196a2 was revealed to be associated with a decreased breast cancer susceptibility compared with the CC genotypes (OR = 0.906, 95% CI: 0.825-0.995, P = 0.039); however, no significant associations were observed between rs2910164 in miR-146a (or rs3746444 in miR-499) and breast cancer susceptibility.
Conclusions: This meta-analysis demonstrates the compelling evidence that the rs11614913 CC genotype in miR-196a2 increases breast cancer risk, which provides useful information for the early diagnosis and prevention of breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767780 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070656 | PLOS |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
New College of Florida, Sarasota, FL, United States.
Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!