Chronic sleep fragmentation promotes obesity in young adult mice.

Obesity (Silver Spring)

Section of Sleep Medicine, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA.

Published: March 2014

Objectives: Short sleep confers a higher risk of obesity in humans. Restricted sleep increases appetite, promotes higher calorie intake from fat and carbohydrate sources, and induces insulin resistance. However, the effects of fragmented sleep (SF), such as occurs in sleep apnea, on body weight, metabolic rates, and adipose tissue distribution are unknown.

Methods: C57BL/6 mice were exposed to SF for 8 weeks. Their body weight, food consumption, and metabolic expenditure were monitored over time, and their plasma leptin levels measured after exposure to SF for 1 day as well as for 2 weeks. In addition, adipose tissue distribution was assessed at the end of the SF exposure using MRI techniques.

Results: Chronic SF-induced obesogenic behaviors and increased weight gain in mice by promoting increased caloric intake without changing caloric expenditure. Plasma leptin levels initially decreased and subsequently increased. Furthermore, increases in both visceral and subcutaneous adipose tissue volumes occurred.

Conclusions: These results suggest that SF, a frequent occurrence in many disorders and more specifically in sleep apnea, is a potent inducer of obesity via activation of obesogenic behaviors and possibly leptin resistance, in the absence of global changes in energy expenditure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947647PMC
http://dx.doi.org/10.1002/oby.20616DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
sleep apnea
8
body weight
8
tissue distribution
8
plasma leptin
8
leptin levels
8
obesogenic behaviors
8
sleep
5
chronic sleep
4
sleep fragmentation
4

Similar Publications

Chronic low-dose REV-ERBs agonist SR9009 mitigates constant light-induced weight gain and insulin resistance via adipogenesis modulation.

Biomed J

January 2025

Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:

Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Nocardiosis in domestic ferrets (Mustela putorius furo).

J Comp Pathol

January 2025

Histologia i Anatomia Patològica, Facultat de Veterinària (UAB), 08193 Bellaterra (Barcelona), Spain.

Nocardia spp are ubiquitous, gram-positive, variably acid-fast, branching and beaded filamentous, facultative intracellular bacteria that are resistant to phagocytosis and can cause localized or systemic disease in a variety of mammals, including humans, as well as in birds, fish and reptiles. Seventeen pet domestic ferrets (Mustela putorius furo) were diagnosed with nocardiosis by several methods including cytological evaluation, histopathology, Ziehl-Neelsen staining and polymerase chain reaction (PCR). All except two ferrets were 2 years old or older at the time of clinical presentation.

View Article and Find Full Text PDF

Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway.

Biomed Pharmacother

January 2025

Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea. Electronic address:

Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells.

View Article and Find Full Text PDF

Resinacein S ameliorates the obesity in mice via activating the brown adipose tissue.

Pak J Pharm Sci

January 2025

Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.

Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!