Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters.

Mol Pharmacol

Department of Pediatrics (G.M., S.K.N.), Department of Biomedical Sciences (G.M.), Department of Medicine (S.K.N.), and Department of Cellular and Molecular Medicine (S.K.N.), University of California at San Diego, La Jolla, California; and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada (J.B.T.).

Published: December 2013

The transcriptional regulation of drug-metabolizing enzymes and transporters (here collectively referred to as DMEs) in the developing proximal tubule (PT) is not well understood. As in the liver, DME regulation in the PT may be mediated through nuclear receptors, which are thought to "sense" deviations from homeostasis by being activated by ligands, some of which are handled by DMEs, including drug transporters. Systems analysis of transcriptomic data during kidney development predicted a set of upstream transcription factors, including hepatocyte nuclear factor 4α (Hnf4a) and Hnf1a, as well as Nr3c1 (Gr), Nfe2l2 (Nrf2), peroxisome proliferator-activated receptor α (Pparα), and Tp53. Motif analysis of cis-regulatory enhancers further suggested that Hnf4a and Hnf1a are the main transcriptional regulators of DMEs in the PT. Available expression data from tissue-specific Hnf4a knockout tissues revealed that distinct subsets of DMEs were regulated by Hnf4a in a tissue-specific manner. Chromatin immunoprecipitation combined with massively parallel DNA sequencing was performed to characterize the PT-specific binding sites of Hnf4a in rat kidneys at three developmental stages (prenatal, immature, adult), which further supported a major role for Hnf4a in regulating PT gene expression, including DMEs. In ex vivo kidney organ culture, an antagonist of Hnf4a (but not a similar inactive compound) led to predicted changes in DME expression, including among others Fmo1, Cyp2d2, Cyp2d4, Nqo2, as well as organic cation transporters and organic anion transporters Slc22a1 (Oct1), Slc22a2 (Oct2), Slc22a6 (Oat1), Slc22a8 (Oat3), and Slc47a1 (Mate1). Conversely, overexpression of Hnf1a and Hnf4a in primary mouse embryonic fibroblasts, sometimes considered a surrogate for mesenchymal stem cells, induced expression of several of these proximal tubule DMEs, as well as epithelial markers and a PT-enriched brush border marker Ggt1. These cells had organic anion transporter function. Taken together, the data strongly supports a critical role for HNF4a and Hnf1a in the tissue-specific regulation of drug handling and differentiation toward a PT-like cellular identity. We discuss our data in the context of the "remote sensing and signaling hypothesis" (Ahn and Nigam, 2009; Wu et al., 2011).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834141PMC
http://dx.doi.org/10.1124/mol.113.088229DOI Listing

Publication Analysis

Top Keywords

hnf4a hnf1a
12
hnf4a
9
hepatocyte nuclear
8
drug-metabolizing enzymes
8
drug transporters
8
proximal tubule
8
role hnf4a
8
expression including
8
organic anion
8
dmes
6

Similar Publications

Introduction: Maturity-onset diabetes of the young (MODY) is a rare group of disorders characterised by impaired functions or development of pancreatic islets and monogenic diabetes at a young age. Diagnosing MODY can be rewarding for both clinicians and patients as it can change the management from generic to targeted therapy.

Methods: This study reports the retrospective analysis of data collected from four clinics between March 2016 and February 2023 from Lucknow, a city in northern India.

View Article and Find Full Text PDF

Aims: To follow up results from an earlier study using an extended sample of 470,000 exome-sequenced subjects to identify genes associated with type 2 diabetes (T2D) and to characterise the distribution of rare variants in these genes.

Materials And Methods: Exome sequence data for 470,000 UK Biobank participants was analysed using a combined phenotype for T2D obtained from diagnostic and prescription data. Gene-wise weighted burden analysis of rare coding variants in the new cohort of 270,000 samples was carried out for the 32 genes previously significant with uncorrected p < 0.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperinsulinemic Hypoglycemia (HH) is a rare condition in newborns characterized by low blood glucose levels, posing serious risks particularly to brain health without proper treatment.
  • It can be caused by mutations in 16 genes related to glucose metabolism and insulin release, which can affect pancreatic beta cells either diffusely or locally.
  • The review focuses on genetic variations, diagnosis, and treatment options for Hyperinsulinemic Hypoglycemia.
View Article and Find Full Text PDF

Background: Individuals with maturity-onset diabetes of the young (MODY) are often misdiagnosed as type 1 or type 2 diabetes and receive inappropriate care. We aimed to investigate the characteristics and treatment of all MODY types in a multicenter, real-world setting.

Methods: Individuals with MODY from the diabetes prospective follow-up (DPV) registry were studied.

View Article and Find Full Text PDF

Background: Single gene variants that give rise to neonatal diabetes mellitus (NDM), maturity onset diabetes of the young (MODY) and syndromic forms of diabetes mellitus (SDM) are responsible for 3.1-4.2% of all diabetes cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!