In order to effectively treat obesity, it must be better understood at the cellular level with respect to metabolic state and environmental stress. However, current two-dimensional (2D) in vitro cell culture methods do not represent the in vivo adipose tissue appropriately due to the absence of complex architecture and cellular signaling. Conversely, 3D in vitro cultures have been reported to have optimal results mimicking the adipose tissue in vivo. The main aim of this study was to examine the efficacy of a novel conjugate of a genetically engineered polymer, elastin-like polypeptide (ELP) and a synthetic polymer, polyethyleneimine (PEI), toward creating a 3D preadipocyte culture system. We then used this 3D culture model to study the preadipocyte differentiation and adipocyte maintenance processes when subjected to various dosages of nutritionally relevant free fatty acids with respect to total DNA and protein content, cell viability, and intracellular triglyceride accumulation. Our results showed that 3T3-L1 preadipocytes cultured on the ELP-PEI surface formed 3D spheroids within 72 h, whereas the cells cultured on unmodified tissue culture polystyrene surfaces remained in monolayer configuration. Significant statistical differences were discovered between the 3D spheroid and 2D monolayer culture with respect to the DNA and protein content, fatty acid consumption, and triglyceride accumulation, indicating differences in cellular response. Results indicated that the 3D culture may be a more sensitive modeling technique for in vitro adipocyte culture and provides a platform for future evaluation of 3D in vitro adipocyte function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25099 | DOI Listing |
Diabetol Metab Syndr
January 2025
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFChin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Immun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!