Protein-protein interactions (PPIs) are essential for implementing cellular processes and thus methods for the discovery and study of PPIs are highly desirable. An emerging method for capturing PPIs in their native cellular environment is in vivo covalent chemical capture, a method that uses nonsense suppression to site specifically incorporate photoactivable unnatural amino acids (UAAs) in living cells. However, in one study we found that this method did not capture a PPI for which there was abundant functional evidence, a complex formed between the transcriptional activator Gal4 and its repressor protein Gal80. Here we describe the factors that influence the success of covalent chemical capture and show that the innate reactivity of the two UAAs utilized, (p-benzoylphenylalanine (pBpa) and p-azidophenylalanine (pAzpa)), plays a profound role in the capture of Gal80 by Gal4. Based upon these data, guidelines are outlined for the successful use of in vivo photo-crosslinking to capture novel PPIs and to characterize the interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182096 | PMC |
http://dx.doi.org/10.1002/bip.22395 | DOI Listing |
RSC Chem Biol
December 2024
Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
Based on their ability to canvas vast genetic or chemical space at low cost and high speed, DNA-encoded libraries (DEL) have served to enable both genomic and small molecule discovery. Current DEL chemical library screening approaches focus primarily on target-based affinity or activity. Here we describe an approach to record the phenotype-based activity of DNA-encoded small molecules on their cognate barcode in living cells.
View Article and Find Full Text PDFChem Sci
December 2024
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia.
The asymmetric unit of the title compound, CHN·Br·CFI, contains one 2,2,6,6 tetra-methyl-piperidine-1-ium cation, one 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetra-methyl-piperidine mol-ecules by inter-molecular C-H⋯Br and N-H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecules filling the space between them. There is a π-π interaction between the almost parallel benzene rings [dihedral angle = 10.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.
Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!