Background: Plants differ in their response to high aluminium (Al) concentrations, which typically cause toxicity in plants grown on acidic soils. The response depends on plant species and environmental conditions such as substrate and cultivation system. The present study aimed to assess Al-phosphate (P) dynamics in the rhizosphere of two bean species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L., in rhizobox experiments.
Results: Root activity of the bean species induced up to a sevenfold increase in exchangeable Al and up to a 30-fold decrease in extractable P. High soluble Al concentrations triggered the release of plant-specific carboxylates, which differed between soil type and plant species. The results suggest that P. vulgaris L. mitigates Al stress by an internal defence mechanism and P. lunatus L. by an external one, both mechanisms involving organic acids.
Conclusion: Rhizosphere mechanisms involved in Al detoxification were found to be different for P. vulgaris L. and P. lunatus L., suggesting that these processes are plant species-specific. Phaseolus vulgaris L. accumulates Al in the shoots (internal tolerance mechanism), while P. lunatus L. prevents Al uptake by releasing organic acids (exclusion mechanism) into the growth media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.6392 | DOI Listing |
J Bacteriol
January 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman.
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Dept. of Plant Science and Crop Protection, University of Nairobi, P.O Box 29053-00625, Nairobi, Kenya.
Micronutrient malnutrition is one of the most serious health challenges facing vast sectors of Africa's population particularly resource-poor women and children. Main deficiencies include iron, zinc and vitamin A. Plant breeding has frequently been advocated as the most sustainable strategy of providing varieties of different food crop species with enhanced micronutrient density to combat the global hidden hunger problem which affects more than 2 billion people.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.
View Article and Find Full Text PDFVirol J
January 2025
Department of Pediatric, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!