Replication-coupled nucleosome assembly is a critical step in packaging newly synthesized DNA into chromatin. Previous studies have defined the importance of the histone chaperones CAF-1 and ASF1A, the replicative clamp PCNA, and the clamp loader RFC for the assembly of nucleosomes during DNA replication. Despite significant progress in the field, replication-coupled nucleosome assembly is not well understood. One of the complications in elucidating the mechanisms of replication-coupled nucleosome assembly is the lack of a defined system that faithfully recapitulates this important biological process in vitro. We describe here a defined system that assembles nucleosomal arrays in a manner dependent on the presence of CAF-1, ASF1A-H3-H4, H2A-H2B, PCNA, RFC, NAP1L1, ATP, and strand breaks. The loss of CAF-1 p48 subunit causes a strong defect in packaging DNA into nucleosomes by this system. We also show that the defined system forms nucleosomes on nascent DNA synthesized by the replicative polymerase δ. Thus, the developed system reproduces several key features of replication-coupled nucleosome assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885639PMC
http://dx.doi.org/10.4161/cc.26310DOI Listing

Publication Analysis

Top Keywords

nucleosome assembly
20
defined system
16
replication-coupled nucleosome
16
assembly
6
system
6
nucleosome
5
defined
5
human caf-1-dependent
4
caf-1-dependent nucleosome
4
assembly defined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!