The safe and effective polyrotaxane-based drug delivery system could potentially increase the antiproliferative activity of antitumor medicine. A novel scutellarin-polyrotaxane (SCU-PR), in which scutellarin (SCU) was covalently bound to one of the hydroxyl groups of polyrotaxane (PR), was synthesized, and its characterization was further investigated by NMR, XRD, TG, DSC. The cytotoxicity of SCU-PR was assessed in vitro using human HCT116 and LOVO cell lines in results that the IC50 values of SCU-PR (1.03×10(-6) and 1.01×10(-6)mol/L, respectively), which compared with those of free SCU (7.80×10(-5) and 7.70×10(-5)mol/L, respectively), were lower. The valuable properties of SCU-PR will be potentially useful for its application on human colon cancer chemotherapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2013.07.009DOI Listing

Publication Analysis

Top Keywords

delivery system
8
novel polyrotaxane-based
4
polyrotaxane-based delivery
4
system scutellarin
4
scutellarin preparation
4
preparation characterization
4
characterization vitro
4
vitro evaluation
4
evaluation safe
4
safe effective
4

Similar Publications

KSA is transforming its healthcare system by developing and implementing Clinical Practice Guidelines (CPGs), a tool designed to improve patient outcomes, standardize care, and facilitate evidence-based decision-making. CPGs are crucial in addressing healthcare disparities, thereby promoting health equity and patient experience. They are integral to KSA's healthcare transformation agenda.

View Article and Find Full Text PDF

Microneedles as transdermal drug delivery system for enhancing skin disease treatment.

Acta Pharm Sin B

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.

View Article and Find Full Text PDF

The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.

View Article and Find Full Text PDF

Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!