Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus.

Neuroscience

Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, SE 171 76 Stockholm, Sweden. Electronic address:

Published: December 2013

The neurobiological mechanisms of spinal cord stimulation (SCS) when applied for neuropathic pain are still incompletely known. Previous research indicates that brainstem circuitry is pivotal for the SCS effect. The present study aims at exploring the possible contribution to the SCS effects of the pain controlling system emanating from the locus coeruleus (LC) in the brain stem. Experiments were performed on the rat-spared nerve injury pain model. After evaluation of the attenuation of mechanical hypersensitivity induced by SCS, the effects of SCS on neuronal activity in the LC and on the noradrenaline (NA) content in the dorsal spinal cord were analyzed. SCS produced a significant increase in the discharge rate of LC neurons only in rats behaviorally responding to SCS as compared to non-responding and control animals. The NA content in the dorsal quadrant of the spinal cord ipsilateral to the nerve injury was analyzed using enzyme-linked immunosorbent assay in responding, non-responding and intact control rats both immediately following SCS and without SCS. No differences were found between these groups. In awake animals, lidocaine silencing of the ipsilateral LC or blocking of spinal noradrenergic system by intrathecal administration of α1,2 adrenoceptor antagonists failed to influence the antihypersensitivity effect of SCS. The present results indicate that the SCS-induced control of hypersensitivity in an experimental animal model of peripheral neuropathic pain may not be explained by the activation of direct spinal projections of noradrenergic LC neurons, while supraspinal projections of LC neurons still may play a role in the SCS effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2013.09.006DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
scs
11
cord stimulation
8
locus coeruleus
8
neuropathic pain
8
scs effects
8
nerve injury
8
content dorsal
8
spinal
6
exploration supraspinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!