Cell chip with a thiolated chitosan self-assembled monolayer to detect the effects of anticancer drugs on breast normal and cancer cells.

Colloids Surf B Biointerfaces

Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea.

Published: December 2013

Cell-based chips are an effective in vitro analysis tool; however, the sensitivity of the cell chip to biomaterials is high, which is crucial for immobilizing cells on the electrode surface without conductivity. In this study, we report on a cell chip with a thiolated chitosan monolayer that was easy to fabricate, highly adhesive to cells, and enhanced electrochemical signals. Thiolated chitosan containing thiol groups was synthesized and self-assembled on a gold electrode to immobilize cells, and showed superior electrochemical performance to that of poly-l-lysine and collagen. Cyclic voltammetry (CV) was performed to distinguish the redox characteristics of normal (HMEC) and breast cancer cells (MCF-7); then, two anticancer drugs (doxorubicin and cyclophosphamide) were added to the cell cultures to analyze their effects on the redox environment of normal and cancer cells derived from the same origin. As a result, the CV cathode peaks decreased differently with respect to the cell line (normal and cancer) and anticancer drug, which was validated by a conventional MTT viability assay. Hence, the proposed cell chip with a thiolated chitosan modified layer could be used in various fields, including discriminating normal from cancer cells, to evaluating the efficiency of newly developed drugs, and to assessing cytotoxicity of various chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.08.016DOI Listing

Publication Analysis

Top Keywords

cell chip
16
thiolated chitosan
16
normal cancer
16
cancer cells
16
chip thiolated
12
anticancer drugs
8
cells
7
cell
6
normal
5
cancer
5

Similar Publications

Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs .

View Article and Find Full Text PDF

Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.

View Article and Find Full Text PDF

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized linear models to analyze complex experimental designs.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!