Alternative substrates other than glucose could be used by the brain. In this study we hypothesized that lactate and ketone bodies can provide a significant portion of oxidative brain substrates in insulin-dependent diabetes mellitus (IDDM). Six control (C) and six insulin-treated streptozotocin diabetic (IDDM) dogs were studied during euglycemia (EU) and acute insulin induced hypoglycemia (HYPO). During EU for similar plasma glucose concentration (5.5 +/- 0.4 v 5.2 +/- 0.2 mmol/L in IDDM dogs showed a higher baseline lactate concentration (1.5 +/- 0.25 v 0.74 +/- 0.10 mmol/L; P less than .05). The ketone body concentrations were also increased in IDDM dogs but this increase was not statistically significant. The brain glucose uptake was 6.9 +/- 0.6 mumol/kg/min in C and 5.4 +/- 0.7 in IDDM. Lactate was released by the brain both in IDDM dogs (11.36 +/- 1.8 mumol/kg/min) and in C dogs (3.87 +/- 0.9; P less than .05). The brain ketones rate of disappearance (Rd) was 0.3 +/- 0.05 mumol/kg/min in IDDM dogs and 0.19 +/- 0.08 in C dogs. During HYPO the glucose uptake across the brain was 2.88 +/- 0.7 mumol/kg/min in IDDM and 3.12 +/- 0.5 in C dogs. We observed an overall brain lactate release (3.21 +/- 1.7 mol/kg/min) in C dogs and a net uptake (13.44 +/- 1.1; P less than .01) in IDDM (P less than .01). The brain ketones Rd was 0.1 +/- 0.2 mumol/kg/min in IDDM and 0.1 +/- 0.1 in C dogs.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0026-0495(90)90146-4 | DOI Listing |
Front Vet Sci
August 2024
Department of Specialty Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States.
Naturally occurring diabetes mellitus (NODM) is one of the most common endocrine disorders in dogs and its etiology closely resembles type 1 diabetes mellitus (T1DM) in people. Human patients with T1DM commonly have cellular derangements consistent with inflammation, impaired immune function, and hypovitaminosis D. There is little information available regarding inflammatory biomarkers, immune function, and vitamin D status in diabetic dogs.
View Article and Find Full Text PDFTissue Cell
October 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM.
View Article and Find Full Text PDFJ Diabetes Complications
September 2024
College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China. Electronic address:
Purpose: Type 1 diabetes (T1DM) is a chronic metabolic disorder that can cause damage to multiple organs including the spleen. Sole insulin therapy is not satisfactory. This study aims to investigate the effects and mechanisms of combined treatment with insulin and N-acetylcysteine (NAC) on spleen damage in T1DM canines, in order to identify drugs that may better assist patients in the management of diabetes and its complications.
View Article and Find Full Text PDFVet Sci
April 2024
Department of Specialty Medicine, Midwestern University, College of Veterinary Medicine, Glendale, AZ 85308, USA.
Human patients with type 1 diabetes mellitus (T1DM) are susceptible to several long-term complications that are related to glycemic control and immune dysregulation. Immune function remains relatively unexplored in dogs with naturally occurring diabetes mellitus (NODM). Calcitriol improves various aspects of immune function in a variety of species, but its effect in diabetic dogs remains unexplored.
View Article and Find Full Text PDFFront Immunol
February 2024
Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Introduction: Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!