Background: Human heart failure (HF) increases alternative mRNA splicing of the type V, voltage-gated cardiac Na+ channel α-subunit (SCN5A), generating variants encoding truncated, nonfunctional channels that are trapped in the endoplasmic reticulum. In this work, we tested whether truncated Na+ channels activate the unfolded protein response (UPR), contributing to SCN5A electric remodeling in HF.

Methods And Results: UPR and SCN5A were analyzed in human ventricular systolic HF tissue samples and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Cells were exposed to angiotensin II (AngII) and hypoxia, known activators of abnormal SCN5A mRNA splicing, or were induced to overexpress SCN5A variants. UPR effectors, protein kinase R-like ER kinase (PERK), calreticulin, and CHOP, were increased in human HF tissues. Induction of SCN5A variants with AngII or hypoxia or the expression of exogenous variants induced the UPR with concomitant downregulation of Na+ current. PERK activation destabilized SCN5A and, surprisingly, Kv4.3 channel mRNAs but not transient receptor potential cation channel M7 (TRPM7) channel mRNA. PERK inhibition prevented the loss of full-length SCN5A and Kv4.3 mRNA levels resulting from expressing Na+ channel mRNA splice variants.

Conclusions: UPR can be initiated by Na+ channel mRNA splice variants and is involved in the reduction of cardiac Na+ current during human HF. Because the effect is not entirely specific to the SCN5A transcript, the UPR may play an important role in downregulation of multiple cardiac genes in HF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909518PMC
http://dx.doi.org/10.1161/CIRCEP.113.000274DOI Listing

Publication Analysis

Top Keywords

na+ channel
12
channel mrna
12
scn5a
9
unfolded protein
8
protein response
8
human heart
8
heart failure
8
mrna splicing
8
cardiac na+
8
angii hypoxia
8

Similar Publications

ABC-type salt tolerance transporter genes are abundant and mutually shared among the microorganisms of the hypersaline Sambhar Lake.

Extremophiles

January 2025

Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.

To fish-out novel salt-tolerance genes, metagenomic DNA of moderately saline sediments of India's largest hypersaline Sambhar Lake was cloned in fosmid. Two functionally-picked clones helped the Escherichia coli host to tolerate 0.6 M NaCl.

View Article and Find Full Text PDF

Vanadium-based Na superionic conductor (NASICON) type materials (NaVM(PO), M = transition metals) have attracted extensive attention when used as sodium-ion batteries (SIBs) cathodes due to their stable structures and large Na diffusion channels. However, the materials have poor electrical conductivity and mediocre energy density, which hinder their practical applications. Activating the V/V redox couple (V/V≈4.

View Article and Find Full Text PDF

(Pro)renin receptor (PRR) contains overlapping cleavage site for site-1 protease (S1P) and furin for generation of soluble PRR (sPRR). Although S1P-mediated cleavage mediates the release of sPRR, the functional implication of furin-mediated cleavage is unclear. Here we tested whether furin-mediated cleavage was required for the activity of sPRR in activating ENaC in cultured M-1 cells.

View Article and Find Full Text PDF

Mechanisms underlying CSD initiation implicated by genetic mouse models of migraine.

J Headache Pain

January 2025

Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA.

A key unanswered question in migraine neurobiology concerns the mechanisms that make the brain of migraineurs susceptible to cortical spreading depression (CSD, a spreading depolarization that underlies migraine aura and may trigger the migraine pain mechanisms). Important insights into this question can be obtained by studying the mechanisms of facilitation of CSD initiation in genetic mouse models of the disease. These models, all generated from families with hereditary migraine, allow the investigation of the functional consequences of disease-causing mutations at the molecular, cellular, synaptic and neural circuit levels.

View Article and Find Full Text PDF

Despite the importance of ocular surface in human physiology and diseases, little is known about ion channel expression, properties and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse and especially rabbit animal models. Here, we developed primary human Meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!