Neuroserpin, the major inhibitor of tissue plasminogen activator (tPA) in brain, has been shown to be up-regulated in Alzheimer's disease (AD). Inhibition of tPA activity leads to reduced brain levels of plasmin, one of the main enzymes responsible for the degradation and clearance of amyloid-beta and its plaques from the brain. Thyroid hormone is one of the few factors known to enhance expression of neuroserpin in neurons. Thyroid hormone acts on neurons by binding to its receptors THR1α and THR1β, which then function in the nucleus to up-regulate the expression of numerous genes including the RNA-binding protein HuD. HuD acts post-transcriptionally to enhance expression of numerous proteins including neuroserpin by stabilizing their mRNAs. A series of Alzheimer's disease brain tissues were compared to age-matched control brains for their expression of neuroserpin, THRβ1 and HuD by western blotting. Alzheimer's disease brain tissues with elevated neuroserpin protein also showed increased expression of THRβ1 and HuD. Pair-wise analyses showed significant correlation p-values between neuroserpin, THRβ1 and HuD levels; suggesting that the up-regulation of neuroserpin in Alzheimer's disease brain may result from an activation of the thyroid hormone response system in these individuals. These findings provide evidence for a potential relationship between thyroid hormone disorders and Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902180PMC
http://dx.doi.org/10.1016/j.neuint.2013.08.010DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
24
thyroid hormone
20
disease brain
16
expression neuroserpin
12
thrβ1 hud
12
neuroserpin
8
enhance expression
8
expression numerous
8
brain tissues
8
neuroserpin thrβ1
8

Similar Publications

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Introduction: Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses.

Methods: Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease ( = 18), non-Alzheimer's disease neurodegeneration ( = 23) or primary psychiatric disorders ( = 24).

View Article and Find Full Text PDF

Background: Effective detection of cognitive impairment in the primary care setting is limited by lack of time and specialized expertise to conduct detailed objective cognitive testing and few well-validated cognitive screening instruments that can be administered and evaluated quickly without expert supervision. We therefore developed a model cognitive screening program to provide relatively brief, objective assessment of a geriatric patient's memory and other cognitive abilities in cases where the primary care physician suspects but is unsure of the presence of a deficit.

Methods: Referred patients were tested during a 40-min session by a psychometrist or trained nurse in the clinic on a brief battery of neuropsychological tests that assessed multiple cognitive domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!