Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study focuses on the in vitro characterization of bioactive elastin-like recombinamer (ELR) membranes for bone regeneration applications. Four bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), endothelial cell adhesion (REDV), mineralization (HAP), and both cell adhesion and mineralization (HAP-RGDS) were synthesized using standard recombinant protein techniques. The materials were then used to fabricate ELR membranes incorporating a variety of topographical micropatterns including channels, holes and posts. Primary rat mesenchymal stem cells (rMSCs) were cultured on the different membranes and the effects of biomolecular and physical signals on cell adhesion, morphology, proliferation, and differentiation were evaluated. All results were analyzed using a custom-made MATLAB program for high throughput image analysis. Effects on cell morphology were mostly dependent on surface topography, while cell proliferation and cell differentiation were largely dependent on the biomolecular signaling from the ELR membranes. In particular, osteogenic differentiation (evaluated by staining for the osteoblastic marker osterix) was significantly enhanced on cells cultured on HAP membranes. Remarkably, cells growing on membranes containing the HAP sequence in non-osteogenic differentiation media exhibited significant up-regulation of the osteogenic marker as early as day 5, while those growing on fibronectin-coated glass in osteogenic differentiation media did not. These results are part of our ongoing effort to develop an optimized molecularly designed periosteal graft.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2013.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!