An improved preparation of [18F]FPBM: a potential serotonin transporter (SERT) imaging agent.

Nucl Med Biol

Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, Beijing, 100875, P. R. China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014, USA.

Published: November 2013

Introduction: In vivo positron emission tomography (PET) imaging of the serotonin transporter (SERT) is a valuable tool in drug development and in monitoring brain diseases with altered serotonergic function. We have developed a two-step labeling reaction for the preparation of the high serotonin affinity ligand [(18)F]FPBM ([(18)F]2-(2'-((dimethylamino)methyl)-4'-(3-fluoropropoxy)phenylthio)benzenamine, 1).

Method: To improve and automate the radiolabeling of [(18)F]FPBM, 1, an intermediate, [(18)F]3-fluoropropyltosylate, [(18)F]4, was prepared first, and then it was reacted with the phenol precursor (4-(2-aminophenylthio)-3-((dimethylamino)methyl)phenol, 3) to afford [(18)F]FPBM, 1. To optimize the labeling, this O-alkylation reaction was evaluated under different temperatures, using different bases and varying amounts of precursor 3. The desired product was obtained after a solid phase extraction (SPE) purification.

Results: This two-step radiolabeling reaction successfully produced the desired [(18)F]FPBM, 1, with an excellent radiochemical purity (>95%, n = 8). Radiochemical yields were between 31% and 39% (decay corrected, total time of labeling: 70 min, n = 8). The SPE purification cannot completely remove pseudo-carriers in the final dose of [(18)F]FPBM, 1. The concentrations of major pseudo-carriers were measured by UV-HPLC (476-676, 68-95 and 50-71 μg for precursor 3, O-hydroxypropyl and O-allyloxy derivatives, 5 and 6, respectively). To investigate the potential inhibition of SERT binding of these pseudo-carriers, we performed in vitro competition experiments evaluated by autoradiography. Known amounts of 'standard' FPBM, 1, of the pseudo-carriers, 5 and 6, were added to the HPLC-purified [(18)F]1 dose. The inhibition of 'standard' FPBM, 1, binding to the SERT binding sites, using monkey brain sections, were measured (EC50=13, 46, 7.1 and 8.3 nM, respectively for 1, precursor 3, O-hydroxypropyl and O-allyloxy derivative of 3).

Conclusion: An improved radiolabeling method by a SPE purification for preparation of [(18)F]FPBM, 1, was developed. The results suggest that it is feasible to use this labeling method to prepare [(18)F]FPBM, 1, without affecting in vivo SERT binding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2013.08.002DOI Listing

Publication Analysis

Top Keywords

sert binding
12
[18f]fpbm
8
preparation [18f]fpbm
8
serotonin transporter
8
transporter sert
8
spe purification
8
precursor o-hydroxypropyl
8
o-hydroxypropyl o-allyloxy
8
'standard' fpbm
8
sert
5

Similar Publications

Background: Durazz. is one of the most popular herbs used for depression treatment, but the molecular basis for its mechanism of action has not been fully addressed. Previously, we isolated and identified two lignan glycoside derivatives that were shown to noncompetitively inhibit serotonin transporter (SERT) activity but with a relatively low inhibitory potency compared with those of conventional antidepressants.

View Article and Find Full Text PDF

Serotonin transporter (SERT) availability was assessed using 2 tracers, [C],-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ([C]DASB) and [C],-dimethyl-2-(2-amino-4-fluoromethylphenylthio)benzylamine) ([C]MADAM), in independent cohorts of patients and controls. This study aimed to independently confirm whether SERT remains intact in nondepressed individuals with early-stage Parkinson disease (PD), because the use of diverse methodologies could potentially yield disparate results. Seventeen PD patients (5 women and 12 men; age, 64 ± 7 y; Unified Parkinson's Disease Rating Scale motor score, 23 ± 5; Beck Depression Inventory score, 5 ± 4) and 20 age- and sex-matched healthy controls underwent [C]MADAM PET at Karolinska Institutet.

View Article and Find Full Text PDF

Objectives: Sudden death in multiple system atrophy (MSA) is caused by decreased serotonergic innervation, but there is no routine test method for this decrease. In addition to dopamine transporters, iodine-123-labelled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-FP-CIT) binds serotonin transporters (SERTs). We noted a binding potential to quantify the total quantity of I-FP-CIT binding to its receptors.

View Article and Find Full Text PDF

Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1.

Cell Rep

December 2024

Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.

View Article and Find Full Text PDF

In this research, a variety of novel amphetamine derivatives were synthesized and assessed for their potential as multifaceted antidepressant agents. Among these compounds, compound demonstrated potent inhibitory effects on both serotonin and noradrenaline transporters (SERT/NET) and high affinity for histamine H receptor (HR), and displayed low affinity for off-target receptors (H1, α1) and hERG channels, which can reduce the prolongation of the QT interval. Molecular docking studies offered a rational binding model of compound when it forms a complex with SERT, NET, and the histamine H receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!