A chemicogenetic screen was performed in budding yeast mutants that have a weakened replication stress response. This identified an inhibitor of target of rapamycin (TOR) complexes 1 and 2 that selectively enhances the sensitivity of sgs1Δ cells to hydroxyurea and camptothecin. More importantly, the inhibitor has strong synthetic lethality in combination with either the break-inducing antibiotic Zeocin or ionizing radiation, independent of the strain background. Lethality correlates with a rapid fragmentation of chromosomes that occurs only when TORC2, but not TORC1, is repressed. Genetic inhibition of Tor2 kinase, or its downstream effector kinases Ypk1/Ypk2, conferred similar synergistic effects in the presence of Zeocin. Given that Ypk1/Ypk2 controls the actin cytoskeleton, we tested the effects of actin modulators latrunculin A and jasplakinolide. These phenocopy TORC2 inhibition on Zeocin, although modulation of calcineurin-sensitive transcription does not. These results implicate TORC2-mediated actin filament regulation in the survival of low levels of DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2013.08.019 | DOI Listing |
FASEB J
January 2025
August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016.
Populations of proliferating cells such as stem cells and tumors are often nutrient responsive. Highly conserved signaling pathways communicate information about the surrounding environmental, organismal, and cellular nutrient conditions. One such pathway is the Target of Rapamycin (TOR) pathway.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:
Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells (RGC) and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).
View Article and Find Full Text PDFCells
December 2024
Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain.
Autophagy is a catabolic process involved in different cellular functions. However, the molecular pathways governing its potential roles in different cell types remain poorly understood. We investigated the role of autophagy in the context of proteotoxic stress in two central nervous system cell types: the microglia-like cell line BV2 and the neuronal-like cell line N2a.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!