Abnormal expression patterns of phospholipase C-β1(PLC-β1) in specific brain areas of patients with schizophrenia, and its high genetic linkage to the disorder implicated a pathogenetical involvement of PLC-β1 signaling system. The schizophrenia-related behavioral phenotypes displayed in the mutant mice lacking PLC-β1 (PLC-β1 KO) suggested that PLCβ1-linked signaling pathways may be involved in the neural system whose function is disrupted in the pathogenesis of schizophrenia. In the brain, PLC-β1 is known to be linked to muscarinic acetylcholine receptors, metabotropic glutamatergic, serotonergic, and oxytocinergic systems. The objective of this review is to provide an overview of the current knowledge regarding these schizophrenia-related behaviors and discuss the probable ways in which PLC-β1signalling can be involved in the neural mechanisms for each behavior, which may help suggest future directions for research in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbior.2013.08.002 | DOI Listing |
Int J Neuropsychopharmacol
December 2024
Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
Background: Glutamatergic system dysfunction contributes to a full spectrum of schizophrenia-like symptoms, including the cognitive and negative symptoms that are resistant to treatment with antipsychotic drugs (APDs). Aripiprazole, an atypical APD, acts as a dopamine partial agonist, and its combination with haloperidol (a typical APD) has been suggested as a potential strategy to improve schizophrenia. Recently, an analog of aripiprazole, UNC9994, was developed.
View Article and Find Full Text PDFImportance: Schizophrenia is associated with increased age-related morbidity, mortality, and frailty, which are not entirely explained by behavioral factors. Prior studies using epigenetic clocks have suggested that schizophrenia is associated with accelerated aging, however these studies have primarily used unidimensional clocks that summarize aging as a single "biological age" score.
Objective: This meta-analysis uses multidimensional epigenetic clocks that split aging into multiple scores to analyze biological aging in schizophrenia.
Hum Brain Mapp
December 2024
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
With the increasing availability of large-scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross-modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross-modal sources in multiple datasets. In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful linked features across three neuroimaging modalities-structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI-in two large independent datasets, one comprising of control subjects and the other including patients with schizophrenia.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Key Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China.
Cyclic dipeptides (CDPs), known for their diverse biological activities, have potential therapeutic applications in mental and behavioral disorders (MBDs), particularly schizophrenia. This study explores the CDPs' therapeutic potential using bibliometric analysis, network pharmacology, molecular docking, and experimental verification, focusing on the interactions with the SIGMA1 receptor. A literature review over three decades utilizing the Web of Science Core Collection (WOSCC) was conducted to identify the emerging trends in CDPs research.
View Article and Find Full Text PDFJ Psychopathol Clin Sci
October 2024
Department of Psychology, State University of New York at Binghamton.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!