Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1-NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982616PMC
http://dx.doi.org/10.1016/j.celrep.2013.08.011DOI Listing

Publication Analysis

Top Keywords

white matter
12
nf1 loss
8
behavioral deficits
8
nf1
4
loss ras
4
ras hyperactivation
4
hyperactivation oligodendrocytes
4
oligodendrocytes induce
4
induce nos-driven
4
nos-driven defects
4

Similar Publications

Ambient Air Pollution and COPD: The Multiethnic Cohort Study.

Ann Am Thorac Soc

January 2025

University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.

Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.

View Article and Find Full Text PDF

Exposure to Secondhand Cannabis Smoke Among Children.

JAMA Netw Open

January 2025

Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego.

Importance: The degree that in-home cannabis smoking can be detected in the urine of resident children is unclear.

Objective: Test association of in-home cannabis smoking with urinary cannabinoids in children living at home.

Design, Setting, And Participants: This cross-sectional study used baseline data from Project Fresh Air, a 2012-2016 randomized clinical trial to reduce fine particulate matter levels.

View Article and Find Full Text PDF

Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.

View Article and Find Full Text PDF

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and Alzheimer's disease. Differentiating early MCI (EMCI) from late MCI (LMCI) is crucial for early diagnosis and intervention. This study used free-water diffusion tensor imaging (fw-DTI) to investigate white matter differences and voxel-based correlations with Mini-Mental State Examination (MMSE) scores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!