The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gradually reestablished during reprogramming. Our data confirm that long-range chromatin interactions are primarily associated with the spatial segregation of open and closed chromatin, defining overall chromosome conformation. Additionally, we identified two further levels of genome organization in ESCs characterized by colocalization of regions with high pluripotency factor occupancy and strong enrichment for Polycomb proteins/H3K27me3, respectively. Underlining the independence of these networks and their functional relevance for genome organization, loss of the Polycomb protein Eed diminishes interactions between Polycomb-regulated regions without altering overarching chromosome conformation. Together, our data highlight a pluripotency-specific genome organization in which pluripotency factors such as Nanog and H3K27me3 occupy distinct nuclear spaces and reveal a role for cell-type-specific gene-regulatory networks in genome organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825755PMC
http://dx.doi.org/10.1016/j.stem.2013.08.013DOI Listing

Publication Analysis

Top Keywords

genome organization
24
long-range chromatin
12
embryonic stem
8
stem cells
8
reveal role
8
pluripotency factors
8
gene-regulatory networks
8
chromatin interactions
8
pluripotency-specific genome
8
chromosome conformation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!