Distinct ubiquitination cascades act on the peroxisomal targeting signal type 2 co-receptor Pex18p.

Traffic

Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum, 44780, Germany; Systembiochemie, Ruhr-Universität Bochum, Bochum, 44780, Germany; Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics, Medizinisches Proteom-Center, Bochum, 44801, Germany.

Published: December 2013

Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1-receptor. While polyubiquitination of PTS-receptors results in their proteasomal degradation, the monoubiquitinated PTS-receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co-receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin-conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)-type ubiquitin-protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2-pathway complement the data on PTS1-receptor ubiquitination and add up to a unified concept of the ubiquitin-based regulation of peroxisomal import.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tra.12120DOI Listing

Publication Analysis

Top Keywords

protein import
12
ubiquitination cascades
8
peroxisomal targeting
8
co-receptor pex18p
8
rounds protein
8
peroxisomal
6
distinct ubiquitination
4
cascades peroxisomal
4
targeting signal
4
signal type
4

Similar Publications

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair.

Microorganisms

January 2025

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.

Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.

View Article and Find Full Text PDF

Effect of Gene Polymorphisms on Fatty Acid Composition, Chemical Composition, and Carcass Traits in Sonid Sheep.

Animals (Basel)

January 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.

Fatty acids (FAs) are a group of organic compounds that are regulated by polygenic and environmental factors and affect the taste, nutritional value, and quality of meat. Lamb meat is rich in FAs required by the human body, which has directed more attention to sheep research and meat production. The fatty acid-binding protein 4 () gene is considered a candidate gene that can affect FA composition in livestock.

View Article and Find Full Text PDF

Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron HO signalling cascade in Drosophila that is essential for long-term memory formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!