The advances in genotyping technology provide an opportunity to use genomic tools in crop breeding. As compared to field selections performed in conventional breeding programmes, genomics-based genotype screen can potentially reduce number of breeding cycles and more precisely integrate target genes for particular traits into an ideal genetic background. We developed a whole-genome single nucleotide polymorphism (SNP) array, RICE6K, based on Infinium technology, using representative SNPs selected from more than four million SNPs identified from resequencing data of more than 500 rice landraces. RICE6K contains 5102 SNP and insertion-deletion (InDel) markers, about 4500 of which were of high quality in the tested rice lines producing highly repeatable results. Forty-five functional markers that are located inside 28 characterized genes of important traits can be detected using RICE6K. The SNP markers are evenly distributed on the 12 chromosomes of rice with the average density of 12 SNPs per 1 Mb and can provide information for polymorphisms between indica and japonica subspecies as well as varieties within indica and japonica groups. Application tests of RICE6K showed that the array is suitable for rice germplasm fingerprinting, genotyping bulked segregating pools, seed authenticity check and genetic background selection. These results suggest that RICE6K provides an efficient and reliable genotyping tool for rice genomic breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pbi.12113 | DOI Listing |
BMC Plant Biol
January 2025
Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland.
Background: Apple breeding schemes can be improved by using genomic prediction models to forecast the performance of breeding material. The predictive ability of these models depends on factors like trait genetic architecture, training set size, relatedness of the selected material to the training set, and the validation method used. Alternative genotyping methods such as RADseq and complementary data from near-infrared spectroscopy could help improve the cost-effectiveness of genomic prediction.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Division of Scientific Computing, Department of Information Technolokgy, Uppsala University, SE-751 05 Uppsala, Sweden.
Conducting genomic selection in plant breeding programs can substantially speed up the development of new varieties. Genomic selection provides more reliable insights when it is based on dense marker data, in which the rare variants can be particularly informative. Despite the availability of new technologies, the cost of large-scale genotyping remains a major limitation to the implementation of genomic selection.
View Article and Find Full Text PDFFront Genet
January 2025
Ifremer, Ressources Biologiques et Environnement (RBE)-ASIM, La Tremblade, France.
Introduction: The blue mussel is one of the major aquaculture species worldwide. In France, this species faces a significant threat from infectious disease outbreaks in both mussel farms and the natural environment over the past decade. Diseases caused by various pathogens, particularly spp.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
It has been debated whether endometriosis (EMS) adversely affects oocyte quality, potentially leading to a higher incidence of genetically unbalanced embryos or other egg factors that affect the developmental potential. In this study, we explored the effects of endometriosis on risk of chromosomally aberrant in miscarried products of conception (POC) after assisted reproductive treatment (ART), including fresh and frozen cycles. Miscarried POCs were collected from EMS patients (N = 102) and non-EMS patients (N = 441).
View Article and Find Full Text PDFMol Breed
January 2025
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China.
Unlabelled: Pre-harvest sprouting (PHS) of wheat ( L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!