Axial symmetry breaking in self-induced flavor conversionof supernova neutrino fluxes.

Phys Rev Lett

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany.

Published: August 2013

Neutrino-neutrino refraction causes self-induced flavor conversion in dense neutrino fluxes. For the first time, we include the azimuth angle of neutrino propagation as an explicit variable and find a new generic multi-azimuth-angle instability which, for simple spectra, occurs in the normal neutrino mass hierarchy. Matter suppression of this instability in supernovae requires larger densities than the traditional bimodal case. The new instability shows explicitly that solutions of the equations for collective flavor oscillations need not inherit the symmetries of initial or boundary conditions. This change of paradigm requires reconsideration of numerous results in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.091101DOI Listing

Publication Analysis

Top Keywords

self-induced flavor
8
neutrino fluxes
8
axial symmetry
4
symmetry breaking
4
breaking self-induced
4
flavor conversionof
4
conversionof supernova
4
neutrino
4
supernova neutrino
4
fluxes neutrino-neutrino
4

Similar Publications

Formate from THF-C1 metabolism induces the AOX1 promoter in formate dehydrogenase-deficient Komagataella phaffii.

Microb Biotechnol

October 2024

Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium.

In Komagataella phaffii (Pichia pastoris), formate is a recognized alternative inducer to methanol for expression systems based on the AOX1 promoter (pAOX1). By disrupting the formate dehydrogenase encoding FDH1 gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for pAOX1 induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain.

View Article and Find Full Text PDF

Flavor-dependent neutrino transport is described by a well-known kinetic equation for occupation-number matrices in flavor space. However, in the context of fast flavor conversion, we identify an unforeseen predicament: the pivotal self-induced exponential growth of small inhomogeneities strongly violates conservation of neutrino-neutrino refractive energy. We prove that it is traded with the huge reservoir of neutrino kinetic energy through gradients of neutrino flavor coherence (the off-diagonal piece of the flavor density matrix) and derive the missing gradient terms.

View Article and Find Full Text PDF

Variation in fermentation time may be an essential alternative to provide coffee beverages with different and unique sensory profiles. This work investigated the microbiological, chemical, and sensory changes in coffees submitted to different fermentation durations (0, 24, 48, 72, and 96 h). Self-induced anaerobiosis fermentation (SIAF) was used, and two treatments were performed: spontaneous fermentation and inoculation with S.

View Article and Find Full Text PDF

Decoupling cell formation from recombinant protein synthesis is a potent strategy to intensify bioprocesses. Escherichia coli strains with mutations in the glucose uptake components lack catabolite repression, display low growth rate, no overflow metabolism, and high recombinant protein yields. Fast growth rates were promoted by the simultaneous consumption of glucose and glycerol, and this was followed by a phase of slow growth, when only glucose remained in the medium.

View Article and Find Full Text PDF

This study explores the variances in the organic, chemical, and sensory attributes of fermented coffee beans, specifically examining how post-harvest processes influence cup quality. Coffee fruits from the Catuaí IAC-144 variety were processed using both natural coffee (NC) and pulped coffee (PC) methods. The fruits were then subjected to self-induced anaerobic fermentation (SIAF) using one of the following fermentation methods: solid-state fermentation (SSF) or submerged fermentation (SMF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!