Kinetics of DNA-coated sticky particles.

Phys Rev E Stat Nonlin Soft Matter Phys

Center for Soft Matter Research, New York University, New York, New York, USA.

Published: August 2013

DNA-functionalized particles are promising for complex self-assembly due to their specific controllable thermoreversible interactions. However, there has been little work on the kinetics and the aggregation rate, which depend on the rate of particle encounters and the probability that an encounter results in particles sticking. In this study, we investigate theoretically and experimentally the aggregation times of micron-scale particles as a function of DNA coverage and salt concentration. Our 2-μm colloids accommodate up to 70,000 DNA strands. For full coverage and high salt concentration, the aggregation time is 5 min while for 0.1 coverage and low salt it is 4 days. A simple model using reaction-limited kinetics and experimental oligomer hybridization rates describes the data well. A controlling factor is the Coulomb barrier at the nanometer scale retarding DNA hybridization. Our model allows easy measurements of microscopic hybridization rates from macroscopic aggregation and enables the design of complex self-assembly schemes with controlled kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.88.022304DOI Listing

Publication Analysis

Top Keywords

complex self-assembly
8
salt concentration
8
hybridization rates
8
kinetics
4
kinetics dna-coated
4
dna-coated sticky
4
particles
4
sticky particles
4
particles dna-functionalized
4
dna-functionalized particles
4

Similar Publications

Cancer diagnostics often faces challenges, such as invasiveness, high costs, and limited sensitivity for early detection, emphasizing the need for improved approaches. We present a surface-enhanced Raman scattering (SERS)-based platform leveraging inverted pyramid SU-8 nanostructured substrates fabricated via nanoimprint lithography. These substrates, characterized by sharp apices and edges, are further functionalized with (3-aminopropyl)triethoxysilane (APTES), enabling the uniform self-assembly of AuNPs to create a highly favorable configuration for enhanced SERS analysis.

View Article and Find Full Text PDF

Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion.

View Article and Find Full Text PDF

Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk microfluidic technology.

View Article and Find Full Text PDF

In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.

View Article and Find Full Text PDF

Engineering high-activity crosslinked enzyme aggregates via SpyCatcher/SpyTag-mediated self-assembly.

Int J Biol Macromol

January 2025

College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China. Electronic address:

Crosslinked Enzyme Aggregates (CLEAs) are favored for their operational stability and recyclability. However, the traditional CLEAs preparation may distort the enzyme's active site and reduce activity. Therefore, we developed a universally applicable crosslinked SpyCatcher scaffold system designed for the facile preparation of CLEAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!