Ag/Ag2S hybrid nanostructures have recently received much attention, because of their synthetically tunable plasmonic properties and enhanced chemical stability. Sulfidation of pregrown Ag nanocrystals is a facile process for making Ag/Ag2S nanostructures. Understanding the sulfidation process can help in finely controlling the compositional and structural parameters and in turn tailoring the plasmonic properties. Herein we report on our study of the structural and plasmonic evolutions during the sulfidation process of Ag nanocubes, which is carried out at both the ensemble and single-particle levels. Ensemble extinction measurements show that sulfidation first causes the disappearance of the high-order triakontadipolar plasmon modes, which have electric charges located on the sharp vertices and edges of Ag nanocubes, suggesting that sulfidation starts at the vertices of Ag nanocubes. As sulfidation goes on, the dipolar plasmon peak gradually red-shifts, with its intensity first decreasing and then increasing. Electron microscopy characterizations reveal that sulfidation progresses from the outer region to the center of Ag nanocubes. The cubic shape is maintained throughout the sulfidation process, with the edge length being increased gradually. Single-particle scattering measurements show that the dipolar plasmon peak red-shifts and decreases in intensity during sulfidation. An additional scattering peak appears at a shorter wavelength at the late stage of sulfidation. The difference in the sulfidation behavior between ensemble and single-particle measurements is understood with electrodynamic simulations. During ensemble measurements, the Ag core is increasingly truncated, and it becomes a nanosphere eventually. Sulfidation stops at an intermediate stage. During single-particle measurements, Ag nanocubes are completely transformed into Ag2S, leading to the observation of the shorter-wavelength scattering peak.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn404042pDOI Listing

Publication Analysis

Top Keywords

sulfidation
13
sulfidation process
12
evolutions sulfidation
8
plasmonic properties
8
ensemble single-particle
8
dipolar plasmon
8
plasmon peak
8
scattering peak
8
single-particle measurements
8
nanocubes
6

Similar Publications

Photocatalytic Methanol Dehydrogenation with Switchable Selectivity.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.

View Article and Find Full Text PDF

Ultrahigh Selectivity HS Gas Sensor Based CsPbBr Perovskites via Pb-S Bonding Interaction.

ACS Sens

January 2025

State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.

High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

Highly Humidity-Resistant Oxynitride Phosphor BaSiNO:Ce for pc-LEDs.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, P. R. China.

Many phosphor hosts, for example, nitrides and sulfides, often face challenges such as hydrolysis and oxidation, limiting their application in phosphor-converted white light-emitting diodes (pc-LEDs). In this study, we developed a highly humidity-resistant yellow-green-emitting phosphor BaSiNO:Ce (BSNO:Ce). The DFT calculations revealed a high Debye temperature (Θ = 1159 K), indicating a rigid crystal structure that contributes to the photoluminescence thermal quenching resistance of BSNO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!