In this work, tomato pomace, a waste abundantly available in the Mediterranean and other temperate climates agro-food industries, has been used as raw material for the production of some hydrolytic enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase) and α-amylase. The principal step of the process is the solid state fermentation (SSF) of this residue by Aspergillus awamori. In several laboratory experiments, maximum xylanase and exo-PG activities were measured during the first days of culture, reaching values around 100 and 80 IU/gds (international units of enzyme activity per gram of dried solid), respectively. For CMCase and α-amylase production remained almost constant along fermentation, with average values of 19 and 21.5 IU/gds, respectively. Experiments carried out in a plate-type bioreactor at lab scale showed a clear positive effect of aeration on xylanase and CMCase, while the opposite was observed for exo-PG and α-amylase. In general, xylanase was the enzyme produced in higher levels, thus the optimum conditions for the determination of the enzyme activity was characterized. The xylanase activity shows an optimum pH of 5 and an optimum temperature of 50 ºC. The enzyme is activated by Mg(2+), but strongly inhibited by Hg(2+) and Cu(2+). The enzymatic activity remains quite high if the extract is preserved in a range of pH from 3 to 10 and a temperature between 30 ºC to 40 ºC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768745 | PMC |
http://dx.doi.org/10.1590/S1517-838220110004000046 | DOI Listing |
Bioresour Technol
January 2025
Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
This study investigated the upcycling of distilled spent grain (DSG), a melanoidin-rich by-product of the Chinese liquor industry, via fungal solid-state fermentation (SSF). Two fungi, Aspergillus oryzae and Aspergillus awamori, were tested, with A. awamori growing better on DSG than A.
View Article and Find Full Text PDFProtein Expr Purif
February 2025
FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia. Electronic address:
Heterogeneous expression of enzymes allows large-scale production with reduced costs. Changes in glycosylation often occur due to changes in the expression host. In the study, the catalytic and biochemical properties of Aspergillus awamori exo-inulinase 1 are compared for A.
View Article and Find Full Text PDFACS Appl Bio Mater
July 2024
Laboratory of Advanced Functional Materials and Nanotechnology, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, Myrina 81400, Lemnos, Greece.
Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment).
View Article and Find Full Text PDFPlant Dis
June 2024
Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Lingang Campus of Yibin University, East Daxue Road, Sanjiang New District, Yibin City, Lingang Campus of Yibin University, East Daxue Road, Sanjiang New District, Yibin City, Yibin, Sichuan, China, 644000;
Mycologia
June 2024
Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!