Degradation of Benzo [a] Pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447).

Braz J Microbiol

Department of Biotechnology, Modern Institute of Technology (MIT), Dhalwala , Rishikesh-249201, Uttarakhand , India.

Published: October 2009

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 g /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 %. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768576PMC
http://dx.doi.org/10.1590/S1517-838220090004000020DOI Listing

Publication Analysis

Top Keywords

sole source
12
source carbon
12
carbon energy
12
benzo [a]
8
[a] pyrene
8
novel strain
8
bacillus subtilis
8
bmt4i
8
bmt4i mtcc
8
mtcc 9447
8

Similar Publications

Background: Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp.

View Article and Find Full Text PDF

Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches.

BMC Plant Biol

December 2024

College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.

Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.

Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.

View Article and Find Full Text PDF

Secondary Transport Mechanisms in Amino Acid Fed Enhanced Biological Phosphorus Removal.

Chemosphere

December 2024

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Accurate human action recognition is becoming increasingly important across various fields, including healthcare and self-driving cars. A simple approach to enhance model performance is incorporating additional data modalities, such as depth frames, point clouds, and skeleton information, while previous studies have predominantly used late fusion techniques to combine these modalities, our research introduces a multi-level fusion approach that combines information at early, intermediate, and late stages together. Furthermore, recognizing the challenges of collecting multiple data types in real-world applications, our approach seeks to exploit multimodal techniques while relying solely on RGB frames as the single data source.

View Article and Find Full Text PDF

A complete genome sequence of sp. strain S22 capable of growing with fluoroacetate as the sole source of carbon and energy was obtained by PacBio technology. It consists of seven circular replicons totaling 9,367 kb, with a gene cluster involved in fluoroacetate utilization on its smallest 172 kb plasmid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!