The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30°C, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50°C while the extra- and intracellular enzymes produced in SbmF exhibited maximal activities at 60°C. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50°C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768555 | PMC |
http://dx.doi.org/10.1590/S1517-838220090003000025 | DOI Listing |
Sci Adv
January 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Department of Radiology, Wuhan Integrated Traditional Chinese and Western Medicine Hospital (Wuhan First Hospital), Wuhan 430022, Hubei, China.
This research explored the effect of high-fiber diet based on gut microbiota on chronic heart failure (HF) patients. Chronic HF patients, who had undergone a dietary survey indicating a daily dietary fiber intake of less than 15g/d were divided into the control and study groups (n = 50). In addition to conventional heart failure treatment, the study group received dietary guidance, while the control group did not receive any dietary guidance and maintained their usual low-fiber dietary habits.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Pharmacy College, Al-Farahidi University, Baghdad, Iraq.
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.
View Article and Find Full Text PDFGeroscience
January 2025
Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
Flaxseed, a rich source of omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA), lignans, and soluble fiber, has attracted attention for its potential to improve multiple cardiometabolic risk factors. While its benefits are well-recognized, comprehensive evaluations of its direct impact on clinical outcomes, such as the prevention or progression of cardiometabolic diseases, remain limited. Additionally, its potential to support healthy aging and longevity through fundamental biological mechanisms has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!