Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives.

Braz J Microbiol

Núcleo de Biotecnologia, Universidade Federal do Espírito Santo , Vitória, ES , Brasil ; Departamento de Microbiologia, Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar , Havana , Cuba.

Published: January 2008

AI Article Synopsis

Article Abstract

Banana, papaya and pineapple are the most consumed tropical fruits in the world, being Brazil one of the main producers. Fungi Colletotrichum musae, Colletotrichum gloeosporioides and Fusarium subglutinans f.sp. ananas cause severe post harvest diseases and losses in fruits quality. The aim of this work was to evaluate the effectiveness of five monoterpenes to inhibit the mycelial growth and conidia germination of these three phytopathogens. The monoterpenes citral, citronellal, L-carvone, isopullegol and α-pinene were diluted in ethanol to final concentrations from 0.2 to 1%. All monoterpenes were found to inhibit the growth of the three studies fungi in a dose-dependent manner. Citral was the most effective of the oils tested and showed potent fungicidal activity at concentrations above 0.5%. Also, in vivo evaluation with these tropical fruits demonstrated the efficiency of citral to inhibit fungal growth. These results indicate the potential use of citral as a natural pesticide control of post-harvest fruit diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768356PMC
http://dx.doi.org/10.1590/S1517-838220080001000032DOI Listing

Publication Analysis

Top Keywords

tropical fruits
12
monoterpenes inhibit
8
antimicrobial activity
4
activity potential
4
monoterpenes
4
potential monoterpenes
4
monoterpenes tropical
4
fruits
4
fruits preservatives
4
preservatives banana
4

Similar Publications

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Crime is a public health issue that disproportionately affects racially-marginalized populations. Studies have reported that food stores (e.g.

View Article and Find Full Text PDF

Weaker Plant-Frugivore Trait Matching Towards the Tropics and on Islands.

Ecol Lett

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

Biotic interactions play an important role in species diversification and maintenance and, thus, are regarded as the architecture of biodiversity. Since Darwin and Wallace, biologists have debated whether biotic interactions are stronger towards the tropics and on continents, when compared to temperate regions and islands. Here, based on 354 avian frugivory networks accounting for 22,199 interactions between 1247 bird species and 2126 plant species, we quantified trait matching strength, which reflects interaction strength and specificity, across gradients of latitude and insularity globally.

View Article and Find Full Text PDF

Jamun (Syzygium cumini L. Skeels), a less recognized, underutilized, and highly perishable fruit is a delicacy of tropical regions. Soft pulp and thin exocarp make these small purple berries susceptible to mechanical injury and several postharvest diseases.

View Article and Find Full Text PDF

Preparation and evaluation of ozone micro-nano bubbles ice for Litchi precooling.

Food Chem

January 2025

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Institute of Food Testing, Hainan Academy of Inspection and Testing, Haikou 570314, China. Electronic address:

Ozone (O) is an effective agent for post-harvest fruit preservation against diverse microorganisms. In this study, a cost-effective ozone micro-nano bubbles ice (O-MNBI) was prepared, characterized, and subsequently used to precool litchi. The optimal protocols for O-MNBI production were as follows: water (2 °C, pH = 7) was pumped into a micro-nano O bubble generator for 10 min aeration treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!