Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy.

Adv Mater

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.

Published: December 2013

Quantum-confined graphene-like electronic states are directly observed in graphene oxide and photothermally reduced graphene oxide via transient spectroscopy. An unexpected novel hybrid state arising from amorphous carbon-like peripheral structure with high sp(3) /sp(2) carbon ratio in close vicinity of confined graphene-like states is found commonly existent in various carbon nanomaterials, including graphene oxide, graphene quantum dots, and carbon dots.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201302927DOI Listing

Publication Analysis

Top Keywords

graphene oxide
16
quantum-confined graphene-like
8
graphene-like states
8
novel hybrid
8
oxide transient
8
transient spectroscopy
8
graphene
5
direct observation
4
observation quantum-confined
4
states
4

Similar Publications

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil.

Biosensors (Basel)

December 2024

Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey.

Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!