Purpose: We developed and tested a single acquisition rest (99m)Tc-sestamibi/stress (201)Tl dual isotope protocol (SDI) with the intention of improving the clinical workflow and patient comfort of myocardial perfusion single photon emission computed tomography (SPECT).

Methods: The technical feasibility of SDI was evaluated by a series of anthropomorphic phantom studies on a standard SPECT camera. The attenuation map was created by a moving transmission line source. Iterative reconstruction including attenuation correction, resolution recovery and Monte Carlo simulation of scatter was used for simultaneous reconstruction of dual tracer distribution. For clinical evaluation, patient studies were compared to stress (99m)Tc and rest (99m)Tc reference images acquired in a 2-day protocol. Clinical follow-up examinations like coronary angiography (CAG) and fractional flow reserve (FFR) were included in the assessment if available.

Results: Phantom studies demonstrated the technical feasibility of SDI. Artificial lesions inserted in the phantom mimicking ischaemia could be clearly identified. In 51/53 patients, the image quality was adequate for clinical evaluation. For the remaining two obese patients with body mass index > 32 the injected (201)Tl dose of 74 MBq was insufficient for clinical assessment. In answer to this the (201)Tl dose was adapted for obese patients in the rest of the study. In 31 patients, SDI and (99m)Tc reference images resulted in equivalent clinical assessment. Significant differences were found in 20 patients. In 18 of these 20 patients additional examinations were available. In 15 patients the diagnosis based on the SDI images was confirmed by the results of CAG or FFR. In these patients the SDI images were more accurate than the (99m)Tc reference study. In three patients minor ischaemic lesions were detected by SDI but were not confirmed by CAG. In one of these cases this was probably caused by pronounced apical thinning. For two patients no relevant clinical follow-up information was available for evaluation.

Conclusion: The proposed SDI protocol has the potential to improve clinical workflow and patient comfort and suggests improved accuracy as demonstrated in the clinical feasibility study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-013-2551-3DOI Listing

Publication Analysis

Top Keywords

phantom studies
12
99mtc reference
12
clinical
10
patients
10
single acquisition
8
acquisition rest
8
myocardial perfusion
8
sdi
8
clinical workflow
8
workflow patient
8

Similar Publications

Wearable augmented reality in neurosurgery offers significant advantages by enabling the visualization of navigation information directly on the patient, seamlessly integrating virtual data with the real surgical field. This ergonomic approach can facilitate a more intuitive understanding of spatial relationships and guidance cues, potentially reducing cognitive load and enhancing the accuracy of surgical gestures by aligning critical information with the actual anatomy in real-time. This study evaluates the benefits of a novel AR platform, VOSTARS, by comparing its targeting accuracy to that of the gold-standard electromagnetic (EM) navigation system, Medtronic StealthStation S7.

View Article and Find Full Text PDF

Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells.

Clin Transl Radiat Oncol

March 2025

Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).

View Article and Find Full Text PDF

A preliminary study of linear accelerator-based spatially fractionated radiotherapy.

Front Oncol

January 2025

Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Purpose: This study aimed to provide quantitative information for implementing Lattice radiotherapy (LRT) using a medical linear accelerator equipped with the Millennium 120 multi-leaf collimator (MLC). The research systematically evaluated the impact of varying vertex diameters and separations on dose distribution, peak-to-valley dose ratio (PVDR), and normal tissue dose.

Methods: A cylindrical Virtual Water™ phantom was used to create LRT treatments using the Eclipse version 16.

View Article and Find Full Text PDF

Purpose: This study evaluated beam quality and radiation dosimetry of a CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO). PVO features miniaturized electronics, a detector cut with microblade technology, and increased filtration in order to increase x-ray detection and reduce image noise.

Methods: We assessed the performance of two similar 320-detector CT scanners: one equipped with PVO and one without.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to evaluate the image quality of a commercial CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO).

Methods: CT number, noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectrum (NPS) were assessed using the ACR CT Accreditation phantom scanned with various acquisitions at 80 kV, 100 kV, 120 kV, and 135 kV, each with multiple CTDIvol values of 20 mGy, 40 mGy, and 65 mGy. Artifacts were evaluated in an anthropomorphic head phantom, a cadaver head, and in patient studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!