Although bis(α-diimine)Ni complexes were prepared when amine-substituted chelates were added to Ni(COD)2, the incorporation of strong-field phosphine donors allowed the isolation of (κ(4)-N,N,P,P-DI)Ni hydrosilylation catalysts. The crystallographic investigation of two different (κ(4)-N,N,P,P-DI)Ni compounds revealed that the geometry about nickel influences the observed degree of α-diimine reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt52419aDOI Listing

Publication Analysis

Top Keywords

hydrosilylation catalysts
8
co-donor field
4
field strength
4
strength preparation
4
preparation tetradentate
4
tetradentate α-diimine
4
α-diimine nickel
4
nickel hydrosilylation
4
catalysts bisα-diimineni
4
bisα-diimineni complexes
4

Similar Publications

Silylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.

View Article and Find Full Text PDF

Molybdenum-Catalyzed ()-Selective Anti-Markovnikov Hydrosilylation of Alkynes.

Molecules

December 2024

School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.

Herein, we report the first example of molybdenum-catalyzed ()-Selective anti-Markovnikov hydrosilylation of alkynes. The reaction operates effectively with the utilization of minute amounts of the inexpensive, bench-stable pre-catalyst and ligand under mild conditions. Moreover, this molybdenum-catalyzed hydrosilylation process features the advantages of simple operation, excellent selectivity, and broad functional groups tolerance.

View Article and Find Full Text PDF

Porous silicon is one of the most explored nanostructured materials in various biomedical applications owing to its remarkable properties. However, its inherent chemical instability mandates a robust surface modification procedure, and proper surface bioengineering is essential to ensure its effectiveness in the biomedical field. In this study, we introduce a one-pot functionalization strategy that simultaneously stabilizes porous silicon nanoparticles and decorates their surface with carbohydrates through hydrosilylation chemistry, combining mild temperatures and a Lewis acid catalyst.

View Article and Find Full Text PDF

Reactivity Study of the Bis(phosphine)-Stabilized Antimony(I) Cation.

Inorg Chem

December 2024

Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 Maharashtra, India.

The 5,6-Bis(diisopropylphosphino)acenaphthene -stabilized Sb(I) cationic compound [LSb][OTf] (OTf = CFSO) possessing two lone pairs of electrons on the Sb(I) center showed nucleophilic behavior toward methyl trifluoromethanesulfonate forming the oxidized product [LSbMe][OTf] (OTf = CFSO). Reaction of compound with Lewis acids such as GaCl and AlBr led to changes in the counteranions only giving products [LSb][GaCl] and [LSb][SbBr] , respectively. A metathesis reaction was observed when compound was reacted with PI.

View Article and Find Full Text PDF

Catalytic Reductive Amination and Tandem Amination-Alkylation of Esters Enabled by a Cationic Iridium Complex.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.

Reported herein is a convenient and efficient method for one-pot, catalytic reductive amination, as well as the first multi-component tandem reductive amination-functionalization of bench-stable and readily available common carboxylic esters. This method is based on the cationic [Ir(COD)]BArF-catalyzed chemoselective hydrosilylation of esters, followed by one-pot acid-mediated amination and nucleophilic addition. The reaction was conducted under mild conditions at a very low catalyst loading (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!