Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-013-9984-x | DOI Listing |
Toxics
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation.
View Article and Find Full Text PDFToxics
January 2025
MOE Key Lab of Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China.
Acrylamide (ACR) is a commonly used organic compound that exhibits evident neurotoxicity in humans. Our previous studies showed that the mechanisms of ACR-caused neurotoxicity included apoptosis, PERK-mediated endoplasmic reticulum stress, and autophagy, but the relationships among them were still unclear. This paper investigated the relationships among apoptosis, autophagy, and the PERK pathway to demonstrate the mechanism of ACR neurotoxicity further.
View Article and Find Full Text PDFMetabolites
January 2025
Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
Polyunsaturated fatty acids in particular omega-3 fatty acids, such as docosahexaenoic acid (DHA), are essential nutrients and components of the plasma membrane. They are involved in various processes, including synaptic development, functionality, integrity, and plasticity, and are therefore thought to have general neuroprotective properties. Considerable research evidence further supports the beneficial effects of omega-3 fatty acids, specifically on mitochondria, through their antioxidant and anti-apoptotic properties, making them an attractive addition in treatment options for neurodegenerative disorders in which mitochondrial alterations are commonly observed.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510282, PR China. Electronic address:
Background: Parkinson's Disease (PD) often presents with a compromised blood-brain barrier (BBB), which hyperglycemia may exacerbate. Pericytes, a key cell for BBB integrity, are potential therapeutic targets for neurodegenerative disorders. Few studies have developed 3D PD cell models incorporating neurovascular units (NVU) through the co-culture of human endothelial, pericytes, astrocytes, and SH-SY5Y cells to evaluate BBB impairment and the role of pericytes under hyperglycemic condition.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
To investigate the neuroprotective mechanism of mild hypothermia (MH) in ameliorating cerebral ischemia reperfusion (IR) injury. The Pulsinelli's four-vessel ligation method was utilized to establish a rat model of global cerebral IR injury. To investigate the role of S100A8 in MH treatment of cerebral IR injury, hippocampus-specific S100A8 loss or gain of function was achieved using an adeno-associated virus system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!