Cognitive control and the COMT Val¹⁵⁸Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency.

Psychol Res

Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands, http://dx.doi.org/10.1007/s00426-013-0514-8DOI Listing

Publication Analysis

Top Keywords

cognitive flexibility
16
comt val158met
8
val/val homozygous
8
homozygous individuals
8
prefrontal dopamine
8
dopamine levels
8
first-person shooter
8
transfer effects
8
genetic predisposition
8
cognitive
7

Similar Publications

Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.

Annu Rev Neurosci

January 2025

1Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; email:

Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions.

View Article and Find Full Text PDF

Executive function (EF) impairments are prevalent in survivors of neonatal critical illness such as children born very preterm (VPT) or with complex congenital heart disease (cCHD). This paper aimed to describe EF profiles in school-aged children born VPT or with cCHD and in typically developing peers, to identify child-specific and family-environmental factors associated with these profiles and to explore links to everyday-life outcomes. Data from eight EF tests assessing working memory, inhibition, cognitive flexibility, switching, and planning in  = 529 children aged between 7 and 16 years was subjected into a latent profile analysis.

View Article and Find Full Text PDF

Animals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.

View Article and Find Full Text PDF

Background: Although impaired cognitive control is common during the acute detoxification phase of substance use disorders (SUD) and is considered a major cause of relapse, it remains unclear after prolonged methadone maintenance treatment (MMT). The aim of the present study was to elucidate cognitive control in individuals with heroin use disorder (HUD) after prolonged MMT and its association with previous relapse.

Methods: A total of 63 HUD subjects (41 subjects with previous relapse and 22 non-relapse subjects, mean MMT duration: 12.

View Article and Find Full Text PDF

Brain-Computer Interface and Electrochemical Sensor Based on Boron-Nitrogen Co-Doped Graphene-Diamond Microelectrode for EEG and Dopamine Detection.

ACS Sens

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!