Diclofenac removal in urine using strong-base anion exchange polymer resins.

Water Res

Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.

Published: November 2013

One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Experiments with ketoprofen, in addition to diclofenac, suggest that polystyrene anion exchange resins can be used to selectively remove other acidic pharmaceuticals from urine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2013.08.015DOI Listing

Publication Analysis

Top Keywords

diclofenac removal
16
anion exchange
16
diclofenac
12
resin
9
strong-base anion
8
exchange polymer
8
polymer resins
8
human urine
8
pharmaceuticals urine
8
fresh ureolyzed
8

Similar Publications

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

Development of new adsorbents for the efficient removal of organic pollutants from water is one of the most emerging environmental issues. Current studies in this field focus on improving the adsorption capacity of various materials and/or broadening the pH range in which the adsorbents can efficiently remove target pollutants. In this study, we designed bifunctional hyper-cross-linked polymers (HCPs) containing both carbonyl and amine species to investigate the effect of amine functional groups on the efficiency of adsorptive removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water.

View Article and Find Full Text PDF

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

Removal of mixed PhACs by combined UV/HO and biologically activated carbon process: Toxicity assessment, transformation products and microbial community.

J Environ Manage

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China. Electronic address:

This study examined the removal and toxicity reduction of mixed pharmaceutically active compounds (PhACs), including carbamazepine, erythromycin, gemfibrozil, and diclofenac, in the UV/HO tandem with biologically activated carbon (UV/HO-BAC) process and explored potential detoxification mechanisms. Results indicated that the combined process effectively removed the mixed PhACs, with the UV/HO segment being the primary contributor. As distinct from concentration removal, the effluent toxicity significantly increased after UV/HO treatment.

View Article and Find Full Text PDF
Article Synopsis
  • The ZnO-CoO catalyst, synthesized through the co-precipitation method, demonstrated high efficiency for removing diclofenac sodium (DCF) by activating peroxymonosulfate (PMS), achieving nearly 99% removal under optimal conditions.
  • Quenching experiments highlighted that the reactive oxygen species, singlet oxygen, and superoxide radicals were crucial for DCF degradation in the ZnO-CoO/PMS system, with catalyst stability being confirmed through negligible cobalt leaching and consistent degradation rates over multiple cycles.
  • Eight degradation products of DCF were identified and assessed for toxicity, indicating that the ZnO-CoO/PMS system is a viable option for degrading organic pollutants effectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!