Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging technique that enables the visualization of vascular changes originating in the cortex on the execution of a simple motor task. We aimed to assess the usefulness of sensorimotor fMRI using echo-planar imaging (EPI) techniques and assess its clinical usefulness in the identification of the central sulcus. We studied 32 candidates for neurosurgery who had centrally located space-occupying lesions with fMRI using EPI images with blood oxygen level-dependent (BOLD) gradient-echo (GE) sequences acquired on a 1.5T scanner while patients repeatedly opened and closed their hands. Statistical activation images (t images) corresponding to the movements of the right and left hands were compared using cancellation analysis. Three-dimensional reconstruction of the cranium and brain of each patient showed the relative position of the expansive lesion and of non-damaged cortical tissue. Reproducible and selective functional sensorimotor activation was observed in 32 patients. Validation was carried out by intraoperative mapping in 19 patients. Based on intraoperative confirmation data we assumed that functional MR imaging (fMRI) is a valid method for identifying the motor cortex. Nevertheless, a limitation to our study is that not all the patients received invasive cortical stimulation. It is also relevant to indicate that fMRI and intraoperative procedures coincide in the sulcus identified as the sensorimotor cortex. Neurological examination did not reveal postoperative motor/sensitive deterioration in the remaining patients. fMRI using GE EPI sequences in combination with three-dimensional reconstruction is a useful and easy technique for functional identification of the sensorimotor cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1177/197140091202500116DOI Listing

Publication Analysis

Top Keywords

sensorimotor cortex
12
identification central
8
central sulcus
8
epi sequences
8
sequences combination
8
reconstruction easy
8
easy technique
8
technique functional
8
functional identification
8
identification sensorimotor
8

Similar Publications

Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study.

View Article and Find Full Text PDF

Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.

View Article and Find Full Text PDF

Introduction: The vergence neural system was stimulated to dissect the afferent and efferent components of symmetrical vergence eye movement step responses. The hypothesis tested was whether the afferent regions of interest would differ from the efferent regions to serve as comparative data for future clinical patient population studies.

Methods: Thirty binocularly normal participants participated in an oculomotor symmetrical vergence step block task within a functional MRI experiment compared to a similar sensory task where the participants did not elicit vergence eye movements.

View Article and Find Full Text PDF

We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.

View Article and Find Full Text PDF

Treadmill exercise prevents stress-induced anxiety-like behaviors via enhancing the excitatory input from the primary motor cortex to the thalamocortical circuit.

Nat Commun

January 2025

Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.

Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!