AI Article Synopsis

  • Prior research highlights the critical role of cellular prion protein (PrP(C)) in Alzheimer's disease (AD) development and pathology.
  • In this study, the researchers focused on how PrP(C) affects the processing of amyloid-β protein precursor (AβPP) and interacts with tau and its phosphorylated forms.
  • Findings show that PrP(C) reduces AβPP cleavage and tau expression in certain conditions, suggesting a protective role against AD-related tau toxicity.

Article Abstract

Previous studies indicate an important role for the cellular prion protein (PrP(C)) in the development of Alzheimer's disease (AD) pathology. In the present study, we analyzed the involvement of PrP(C) in different pathological mechanisms underlying AD: the processing of the amyloid-β protein precursor (AβPP) and its interaction with AβPP, tau, and different phosphorylated forms of the tau protein (p-tau). The effect of PrP(C) on tau expression was investigated in various cellular compartments using a HEK293 cell model expressing a tau mutant (3PO-tau) or wild type (WT)-tau. We could show that PrP(C) reduces AβPP cleavage, leading to decreased levels of Aβ40 and sAβPP without changing the protein expression of AβPP, β-secretase, or γ-secretase. Tau and its phosphorylated forms were identified as interactions partners for PrP(C), raising the question as to whether PrP(C) might also be involved in tau pathology. Overexpression of PrP(C) in PRNP and 3PO-tau transfected cells resulted in a reduction of 3PO-tau and p-tau as well as a decrease of 3PO-tau-related toxicity. In addition, we used the transgenic PrP(C) knockout (Prnp0/0) mouse line to study the dynamics of tau phosphorylation, an important pathological hallmark in the pathogenesis of AD in vivo. There, an effect of PrP(C) on tau expression could be observed under oxidative stress conditions but not during aging. In summary, we provide further evidence for interactions of PrP(C) with proteins that are known to be the key players in AD pathogenesis. We identified tau and its phosphorylated forms as potential PrP-interactors and report a novel protective function of PrP(C) in AD-like tau pathology.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-130566DOI Listing

Publication Analysis

Top Keywords

tau phosphorylated
12
phosphorylated forms
12
prpc
11
tau
10
cellular prion
8
prion protein
8
prpc tau
8
tau expression
8
tau pathology
8
protein
5

Similar Publications

Background: The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

Association of Favorable Cerebrospinal Fluid Markers With Reversion of Mild Cognitive Impairment Due to Parkinson's Disease.

J Neuropsychiatry Clin Neurosci

January 2025

Department of Psychology, California State University, San Bernardino (Ryczek, Rivas, Hemphill, Zanotelli, Renteria, Jones); Department of Neurology, Division of Movement Disorders, Loma Linda University Health System, Loma Linda, Calif. (Dashtipour); Center on Aging, California State University, San Bernardino (Jones).

Objective: Cognitive impairment is a common nonmotor symptom among individuals with Parkinson's disease (PD). Although cognitive impairment generally develops progressively, individuals with PD-associated mild cognitive impairment (PD-MCI) may revert to being cognitively normal (CN), which is referred to as PD-MCI reversion. Previous studies are inconsistent in whether PD-MCI reverters are at greater risk for PD-MCI recurrence relative to CN individuals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!