We present the conical-intersection quantum dynamics of the nonreactive quenching (NQ) OH(A(2)Σ(+)) + H'((2)S) → OH(X(2)Π) + H'((2)S), exchange (X) OH(A(2)Σ(+)) + H'((2)S) → OH'(A(2)Σ(+)) + H((2)S), exchange-quenching (XQ) OH(A(2)Σ(+)) + H'((2)S) → OH'(X(2)Π) + H((2)S), and reaction (R) OH(A(2)Σ(+)) + H'((2)S) → O((1)D) + H2(X(1)Σg (+)) collisions. We obtain initial-state-resolved reaction probabilities, cross sections, and rate constants by considering OH in the ground vibrational state and in the rotational levels j0 = 0, 1, 2, and 5. Coupled-channel real wavepackets (WPs) on the X̃(1)A(') and B̃(1)A(') coupled electronic states are propagated by using the Dobbyn and Knowles diabatic potential surfaces and coupling [A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997) and A. J. Dobbyn and P. J. Knowles, Faraday Discuss. 110, 207 (1998)], and performing asymptotic or flux analysis. NQ is the preferred product channel, followed by XQ, R, and X. Moreover, the nonadiabatic quenching processes account for more than 80% of the total rate constants. WP snapshots show a reaction mechanism in good agreement with reaction probabilities. NQ, XQ, and R cross sections, and NQ rate constants decrease with the collision energy and j0, whereas the X reactivity increases, and XQ and R rates are nearly constant with j0. In general, quantum rate constants are smaller than experimental or quasiclassical data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4819355 | DOI Listing |
Chirality
December 2024
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy.
(S)-Indoline-2-carboxylic acid (H-(2S)-Ind-OH) possesses the ability to influence the conformation of peptide bonds towards the cis amide isomer in polar solvents. However, its potential utilization as a conformational switch within long peptide sequences poses challenges due to its low reactivity and strong inclination to form diketopiperazines. The present study explores its reactivity under various conditions and proposes synthetic strategies to overcome these limitations.
View Article and Find Full Text PDFJ Chem Phys
April 2024
School of Physics and Physical Engineering, Qufu Normal University, 273165 Qufu, People's Republic of China.
A diabatic potential energy matrix (DPEM) for the two lowest states of BeH2+ has been constructed using the combined-hyperbolic-inverse-power-representation (CHIPR) method. By imposing symmetry constraints on the coefficients of polynomials, the complete nuclear permutation inversion symmetry is correctly preserved in the CHIPR functional form. The symmetrized CHIPR functional form is then used in the diabatization by ansatz procedure.
View Article and Find Full Text PDFJ Chem Phys
February 2024
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain; and Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain.
This work combines for the first time ab initio molecular dynamics (AIMD) within the Born-Oppenheimer approximation with a global natural orbital functional (GNOF), an approximate functional of the one-particle reduced density matrix. The most prominent feature of GNOF-AIMD is its ability to display the real-time evolution of natural orbitals, providing detailed information on the time-dependent electronic structure of complex systems and processes, including reactive collisions. The quartet ground-state reaction N(4S) + H2(1Σ) → NH(3Σ) + H(2S) is taken as a validation test.
View Article and Find Full Text PDFChemphyschem
October 2023
Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de Química, módulo 13, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
A computational study of Be +H(2s, 2p) collisions has been carried out employing the Classical Trajectory Monte Carlo (CTMC) method for the impact energy range from 20 keV/u to 1000 keV/u. The integral n partial cross sections for H(n) excitation and Be (n) electron capture and, the total ionization and electron capture cross sections are calculated and compared to recent semiclassical results. A general good agreement is observed for the n partial and total electron capture and ionization cross sections.
View Article and Find Full Text PDFJ Chem Phys
June 2023
Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The photodissociation dynamics of methylamine (CH3NH2) upon excitation in the blue edge of the first absorption A-band, in the 198-203 nm range, are investigated by means of nanosecond pump-probe laser pulses and velocity map imaging combined with H(2S)-atom detection through resonance enhanced multiphoton ionization. The images and corresponding translational energy distributions for the H-atoms produced show three different contributions associated with three reaction pathways. The experimental results are complemented by high-level ab initio calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!