Reduced purities as measures of decoherence in many-electron systems.

J Chem Phys

Theory Department, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.

Published: September 2013

A hierarchy of measures of decoherence for many-electron systems that is based on the purity and the hierarchy of reduced electronic density matrices is presented. These reduced purities can be used to characterize electronic decoherence in the common case when the many-body electronic density matrix is not known and only reduced information about the electronic subsystem is available. Being defined from reduced electronic quantities, the interpretation of the reduced purities is more intricate than the usual (many-body) purity. This is because the nonidempotency of the r-body reduced electronic density matrix that is the basis of the reduced purity measures can arise due to decoherence or due to electronic correlations. To guide the interpretation, explicit expressions are provided for the one-body and two-body reduced purities for a general electronic state. Using them, the information content and structure of the one-body and two-body reduced purities is established, and limits on the changes that decoherence can induce are elucidated. The practical use of the reduced purities to understand decoherence dynamics in many-electron systems is exemplified through an analysis of the electronic decoherence dynamics in a model molecular system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4819819DOI Listing

Publication Analysis

Top Keywords

reduced purities
24
reduced electronic
16
measures decoherence
12
many-electron systems
12
electronic density
12
reduced
11
electronic
9
decoherence many-electron
8
electronic decoherence
8
density matrix
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!