Effectiveness of arsenite adsorption by ferric and alum water treatment residuals (FARs) with different grain sizes was studied. The results indicated that the content of active Fe and Al, the specific surface area and pore volume in FARs with different grain sizes were in the range of 523.72-1 861.72 mmol x kg(-1), 28.15-265.59 m2 x g(-1) and 0.03-0.09 cm3 x g(-1), respectively. The contents of organic matter, fulvic acid, humic acid and humin were in the range of 46.97-91.58 mg x kg(-1), 0.02-32.27 mg x kg(-1), 22.27-34.09 mg x kg(-1) and 10.76-34.22 mg x kg(-1), respectively. Results of SEM and XRD analysis further demonstrated that FARs with different grain sizes were amorphousness. Batch experiments suggested that both the pseudo-first-order and pseudo-second-order equations could well describe the kinetics adsorption processes of arsenite by FARs. Moreover, the contents of arsenite absorbed by FARs increased with the increase of arsenite concentrations. The theoretical saturated adsorption capacities calculated from Langmuir isotherm model were in the range of 6.72-21.79 mg x g(-1). Interestingly, pH showed little effect on the arsenite adsorption capability of FARs. The capability of FARs had a close relationship with their physicochemical properties. Correlation analysis showed that the active Fe and Al contents and pore volume had major effects on the arsenite adsorption capability of FARs.
Download full-text PDF |
Source |
---|
Water Res
March 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China. Electronic address:
Materials (Basel)
November 2024
Grupo de Investigación Estudios Interdisciplinarios, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Av. Antonio José de Sucre km 1½ vía Guano, Riobamba 060103, Ecuador.
The adsorption of As(V) and As(III) (0.01-1 mM) on a calcined oxidic lithologic material substrate with pH-dependent surface variable charges, chemically modifiable, was investigated. The substrate was prepared via thermal treatment using a natural lithologic material rich in amphoteric oxides of Fe, Al, Mn and Ti.
View Article and Find Full Text PDFChemosphere
November 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China. Electronic address:
Chemosphere
November 2024
IIIA - Instituto de Investigación e Ingeniería Ambiental, CONICET, Universidad Nacional de San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Prov. de Buenos Aires, Argentina. Electronic address:
ZnAlFe mixed metal oxides (ZnAlFe-MMOs) were synthesized from layered double hydroxides (LDHs) prepared by the coprecipitation method at pH 9 using an initial weight composition of Zn = 75%, Al = 15% and Fe = 10%, with or without the addition of citric or oxalic acid. The solids were calcined at 400 °C to obtain the respective MMOs, which exhibited relatively high specific surface areas (165.3-63.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Engineering, Yunnan University, Kunming 650091, China.
Arsenite is a hazardous substance in water due to its high toxicity and carcinogenic nature, necessitating effective analysis and remediation methods. This study introduces surface arsenite molecularly imprinted polymers (As(Ⅲ)-MIP@MOF) and an advanced sensing platform using arsenite (H₃AsO₃) as the template. By utilizing computational simulations to optimize the functional monomer MAA and the pre-polymerization ratio, we achieved efficient arsenite removal with high adsorption capacity (328.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!