Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A common goal in environmental epidemiologic studies is to undertake logistic regression modeling to associate a continuous measure of exposure with binary disease status, adjusting for covariates. A frequent complication is that exposure may only be measurable indirectly, through a collection of subject-specific variables assumed associated with it. Motivated by a specific study to investigate the association between lung function and exposure to metal working fluids, we focus on a multiplicative-lognormal structural measurement error scenario and approaches to address it when external validation data are available. Conceptually, we emphasize the case in which true untransformed exposure is of interest in modeling disease status, but measurement error is additive on the log scale and thus multiplicative on the raw scale. Methodologically, we favor a pseudo-likelihood (PL) approach that exhibits fewer computational problems than direct full maximum likelihood (ML) yet maintains consistency under the assumed models without necessitating small exposure effects and/or small measurement error assumptions. Such assumptions are required by computationally convenient alternative methods like regression calibration (RC) and ML based on probit approximations. We summarize simulations demonstrating considerable potential for bias in the latter two approaches, while supporting the use of PL across a variety of scenarios. We also provide accessible strategies for obtaining adjusted standard errors to accompany RC and PL estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766852 | PMC |
http://dx.doi.org/10.1007/s13253-012-0115-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!