Downregulation of NOX4 expression by roflumilast N-oxide reduces markers of fibrosis in lung fibroblasts.

Mediators Inflamm

Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA.

Published: February 2014

The phosphodiesterase 4 inhibitor roflumilast prevents bleomycin- (BLM-) induced lung fibrosis in animal models. However, its mechanism of action remains unknown. We investigated whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, can modulate in vitro the oxidative effects of BLM on human lung fibroblasts (HLF). In addition, since BLM increases the production of F₂-isoprostanes that have per se fibrogenic activity, the effect of RNO on oxidative stress and fibrogenesis induced by the F₂-isoprostane 8-epi-PGF₂α was investigated. HLF were preincubated either with the vehicle or with RNO and exposed to either BLM or 8-epi-PGF₂α. Proliferation and collagen synthesis were assessed as [(3)H]-thymidine and [(3)H]-proline incorporation. Reactive oxygen species (ROS) and F₂-isoprostanes were measured. NADPH oxidase 4 (NOX4) protein and mRNA were also evaluated. BLM increased both cell proliferation and collagen synthesis and enhanced ROS and F₂-isoprostane production. These effects were significantly prevented by RNO. Also, RNO significantly reduced the increase in both NOX4 mRNA and protein, induced by BLM. Finally, 8-epi-PGF₂α   per se stimulated HLF proliferation, collagen synthesis, and NOX4 expression and ROS generation, and RNO prevented these effects. Thus, the antifibrotic effect of RNO observed in vivo may be related to its ability to mitigate ROS generation via downregulation of NOX4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763264PMC
http://dx.doi.org/10.1155/2013/745984DOI Listing

Publication Analysis

Top Keywords

proliferation collagen
12
collagen synthesis
12
downregulation nox4
8
nox4 expression
8
roflumilast n-oxide
8
lung fibroblasts
8
ros generation
8
rno
7
blm
5
roflumilast
4

Similar Publications

Cryogenic, but not hypothermic, preservation disrupts the extracellular matrix of cell sheets.

Bioact Mater

April 2025

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal.

Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches.

View Article and Find Full Text PDF

Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA.

View Article and Find Full Text PDF

Exosome-carried miR-1248 from adipose-derived stem cells improves angiogenesis in diabetes-associated wounds.

Int J Biol Macromol

January 2025

Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, PR China; The 2011 Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Affiliated Hospital of Zunyi Medical University, PR China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, PR China. Electronic address:

Chronic non-healing wounds are a common complication of diabetes, marked by impaired angiogenesis. This study explores how exosomes (Exo-miR-1248) from miR-1248-overexpressing adipose-derived stem cells enhance diabetic wound healing by modulating endothelial cell function. Adipose-derived stem cells were transfected with a lentivirus carrying miR-1248 to produce Exo-miR-1248, isolated via differential centrifugation.

View Article and Find Full Text PDF

Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis.

J Colloid Interface Sci

January 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu-coordinated MPDA (CMP) as the optimal nanocarrier.

View Article and Find Full Text PDF

Objective: Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!