Is there an optimal time for warfighters to supplement with protein?

J Nutr

University of Nottingham, School of Medicine, Division of Clinical, Metabolic and Molecular Physiology, Postgraduate Entry Medical School, Royal Derby Hospital, Derby, UK.

Published: November 2013

Although nutritional requirements for warfighters will inevitably vary in accordance with job role and active-inactive duty cycling, somewhat generic recommendations do still apply. In considering aspects of "optimal" nutrient timing, it is important to outline singular and combinatorial relationships between protein intake and physical activity (e.g., exercise) in the context of the following: 1) skeletal muscle protein turnover, 2) functional recovery, and 3) adaptation to exercise. The essential amino acid (EAA) components of dietary protein are key macronutrients regulating muscle proteostasis, because they provide substrate to replenish muscle proteins lost during fasted periods. This occurs through a substantial, albeit short-lived (∼2 h) EAA-induced stimulation of muscle protein synthesis (MPS) and via an insulin-mediated suppression of muscle protein breakdown (MPB) (via carbohydrate- and/or EAA-mediated insulin secretory effects). At rest, intake of protein (optimal range between 20 and 40 g of high-quality protein, equating to ∼10-20 g EAAs) every ∼4-5 h is advocated due to the refractoriness of MPS in response to continuous supply. Bouts of exercise also stimulate muscle protein turnover (increasing both MPS and MPB), but in the absence of protein intake net muscle protein balance remains negative such that exercise alone is catabolic. Intake of dietary protein redresses this balance through enhancing both the amplitude and duration of exercise-induced increases in MPS while concomitantly limiting MPB. These postexercise periods of positive net protein balance permit muscle adaptation and functional recovery. Finally, in relation to exercise, protein dosing (at a minimum of ∼20 g) both in close proximity to exercise and thereafter every 4-5 h during waking hours (including before bedtime) is likely optimal for adaptation/functional recovery.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.113.175984DOI Listing

Publication Analysis

Top Keywords

muscle protein
20
protein
13
protein intake
8
muscle
8
protein turnover
8
functional recovery
8
dietary protein
8
protein balance
8
exercise
6
optimal time
4

Similar Publications

South Asia has high prevalence rates of type 2 diabetes (T2D). Until the 1990s, the prevalence of T2D within South Asia was low but much higher in the South Asian diaspora living abroad. Today, high prevalence rates of T2D are reported among those living in South Asia.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Serum Nitric Oxide, Endothelin-1 Correlates Post-Procedural Major Adverse Cardiovascular Events among Patients with Acute STEMI.

Arq Bras Cardiol

January 2025

Department of Cardiovascular Medicine - Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Zhejiang - China.

Background: ST-segment elevation myocardial infarction (STEMI) is a common and severe form of acute myocardial infarction (AMI).

Objectives: The study aimed to investigate the relationship between serum nitric oxide (NO) and endothelin-1 (ET-1) levels with the severity of STEMI and their predictive value for major adverse cardiovascular events (MACE) within one year after percutaneous coronary intervention (PCI) in STEMI patients.

Methods: The retrospective study was conducted on 269 STEMI patients who underwent PCI.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!